1,507 research outputs found

    Digital Holography Data Compression

    Get PDF
    Digital holography processing is a research topic related to the development of novel visual immersive applications. The huge amount of information conveyed by a digital hologram and the different properties of holographic data with respect to conventional photographic data require a comprehension of the performances and limitations of current image and video standard techniques. This paper proposes an architecture for objective evaluation of the performances of the state-of-the-art compression techniques applied to digital holographic data

    Holography - a critical debate within contemporary visual culture

    Get PDF
    Preface: This Special Issue attempts to provide a platform for the critical discussion, reflection and analysis of holography, as a process and methodology within the work of creative practitioners. The Issue examines, through the values and vocabulary of artists and curators, how this medium has developed as a considered practice and where pressure can be placed upon the critical principles of this relatively young medium. The participants published here have taken a risk, not only through the public examination of their development, but also by attempting to contextualise the use and display of holography within a contemporary, cultural framework. I want to thank the contributors of this Special Issue, who share my curiosity towards the critical investigation and contextualisation of our work and ideas in the sphere of creative holography

    Roadmap on digital holography [Invited]

    Get PDF
    This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography

    Using mixed reality for the visualization and dissemination of complex 3D models in geosciences: application to the Montserrat massif (Spain)

    Get PDF
    In the last two decades, both the amount and quality of geoinformation in the geosciences field have improved substantially due to the increasingly more widespread use of techniques such as Laser Scanning (LiDAR), digital photogrammetry, unmanned aerial vehicles, geophysical reconnaissance (seismic, electrical, geomagnetic), and ground-penetrating radar (GPR), among others. Furthermore, the advances in computing, storage and visualization resources allow the acquisition of 3D terrain models (surface and underground) with unprecedented ease and versatility. However, despite these scientific and technical developments, it is still a common practice to simplify the 3D data in 2D static images, losing part of its communicative potential. The objective of this paper is to demonstrate the possibilities of extended reality (XR) for communication and sharing of 3D geoinformation in the field of geosciences. A brief review of the different variants within XR is followed by the presentation of the design and functionalities of headset-type mixed-reality (MR) devices, which allow the 3D models to be investigated collaboratively by several users in the office environment. The specific focus is on the functionalities of Microsoft’s HoloLens 2 untethered holographic head mounted display (HMD), and the ADA Platform App by Clirio, which is used to manage model viewing with the HMD. We demonstrate the capabilities of MR for the visualization and dissemination of complex 3D information in geosciences in data rich and self-directed immersive environment, through selected 3D models (most of them of the Montserrat massif). Finally, we highlight the educational possibilities of MR technology. Today MR has an incipient and reduced use; we hope that it will gain popularity as the barriers of entry become lower.This research was funded by MCIN/ AEI/10.13039/501100011033: PID2019-103974RB-I00 and by Interreg V-A, POCTEFA: EFA364/19.Peer ReviewedPostprint (published version

    Using Virtual Reality to increase technical performance during rowing workouts

    Get PDF
    Technology is advancing rapidly in virtual reality (VR) and sensors, gathering feedback from our body and the environment we are interacting in. Combining the two technologies gives us the opportunity to create personalized and reactive immersive environments. These environments can be used e.g. for training in dangerous situations (e.g. fire, crashes, etc), or to improve skills with less distraction than regular natural environments would have. The pilot study described in this thesis puts an athlete who is rowing on a stationary rowing machine into a virtual environment. The VR takes movement from several sensors of the ergo-meter and displays those in VR. In addition, metrics on technique are being derived from the sensor data and physiological data. All this is used to investigate if, and to which extent, VR may improve the technical skills of the athlete during the complex sport of rowing. Furthermore, athletes are giving subjective feedback about their experience comparing a standard rowing workout, with the workout using VR. First results indicate better performance and an enhanced experience by the athlete
    corecore