99,930 research outputs found

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Development of an Emergency Radio Beacon for Small Unmanned Aerial Vehicles

    Get PDF
    Emergency locator transmitters (ELTs) used to locate manned aircrafts are not well suited to find and recover small crashed unmanned aerial vehicles (UAVs). ELTs utilize an international satellite system for search and rescue (Cospas-Sarsat System), which should leverage its expensive resources to save lives as a priority. Besides, ELTs are too big and heavy to be used within small UAVs. Some of the existing solutions for this problem are based on receivers that detect signal strength, which may be a long and tedious process not suitable for user needs. Others do not have enough range or require radio license and expensive amateur radio receivers. This paper presents an emergency radio beacon specifically designed to locate small UAVs. It is triggered automatically in the event of a crash and allows finding and recovering a crashed UAV in a fast and simple way. It meets not only the required specifications of user-friendliness, size and weight of this kind of application, but also it is a high precision and low cost device. Besides, it has enough range and endurance. The experiments carried out show the operation of the proposed system

    Affection not affliction: The role of emotions in information systems and organizational change

    Get PDF
    Most IS research in both the technical/rational and socio-technical traditions ignores or marginalizes the emotionally charged behaviours through which individuals engage in, and cope with the consequences of, IS practice and associated organizational change. Even within the small body of work that engages with emotions through particular conceptual efforts, affections are often conceived as a phenomenon to be eradicated – an affliction requiring a cure. In this paper, I argue that emotions are always implicated in our lived experiences, crucially influencing how we come to our beliefs about what is good or bad, right or wrong. I draw from the theoretical work of Michel Foucault to argue for elaborating current notions of IS innovation as a moral and political struggle in which individuals’ beliefs and feelings are constantly tested. Finally, I demonstrate these ideas by reference to a case study that had considerable emotional impact, and highlight the implications for future work

    Affordable interactive virtual reality system for the Dynamic Hip Screw surgery training in vitro

    Get PDF
    Interactive virtual reality systems provide safe and cost-effective training environment to improve the technical skills and competence of surgeons. The trainees can have as many practice sessions, without need to the trainer all the time, before even start carrying out the procedure on any real patient. In this paper, we present an affordable interactive virtual reality system for the Dynamic Hip Screw (DHS) surgery training in vitro, through 3D tracking. The system facilitates a safe (in vitro / off patient) training to improve the cognitive coordination of trainees and junior surgeons, in particular the Hands, Eyes and Brain coordination. The system is based on very cheap commercial off-the-shelf (COT) components, which are very affordable, and needs minimum setup effort and knowledge. It also provides a range of visual and quantitative feedback information and measures, such as position, orientation, insertion point, and depth of drilling. It is envisaged that improving this level of coordination, through the training system, will contribute to reducing the failure rate of the DHS procedure. This means better treatment for patients and less costs for the Health services systems (e.g. UK's NHS system)
    • 

    corecore