16,783 research outputs found

    Blackouts: a sociology of electrical power failure

    Get PDF
    Electricity fuels our existence. It powers water purification, waste, food, transportation and communication systems. Modern social life is impossible to imagine without it. This article looks at what happens when the power goes off. It scrutinises the causes and consequences of accidental electrical power cuts. It begins by identifying the reasons for power failure. In doing so, power generation systems are identified as critical infrastructures. They are more fragile than is commonly supposed, and the argument is made that they are getting frailer. Irrespective of cause, blackouts display similar effects. These social patterns are identified. They include measurable economic losses and less easily quantified social costs. Financial damage, food safety, crime, transport issues and problems caused by diesel generators are all discussed. This is more than a record of failures past. It is contended that blackouts are dress rehearsals for the future in which they will appear with greater frequency and greater severity. Increasing numbers of blackouts are anticipated due to growing uncertainties in supply and growing certainties in demand. Supply will become ever more precarious because of peak oil, political instability, infrastructural neglect, global warming and the shift to renewable energy resources. Demand will become stronger because of population growth, rising levels of affluence and the consumer ‘addictions’ which accompany this

    The role of the reactor size for an investment in the nuclear sector: an evaluation of not-financial parameters

    Get PDF
    The literature presents many studies about the economics of new Nuclear Power Plants (NPPs). Such studies are based on Discounted Cash Flow (DCF) methods encompassing the accounts related to Construction, Operation & Maintenance, Fuel and Decommissioning. However the investment evaluation of a nuclear reactor should also include not-financial factors such as siting and grid constraints, impact on the national industrial system, etc. The Integrated model for the Competitiveness Assessment of SMRs (INCAS), developed by Politecnico di Milano cooperating with the IAEA, is designed to analyze the choice of the better Nuclear Power Plant size as a multidimensional problem. In particular the INCAS’s module “External Factors” evaluates the impact of the factors that are not considered in the traditional DCF methods. This paper presents a list of these factors, providing, for each one, the rationale and the quantification procedure; then each factor is quantified for the Italian case. The IRIS reactor has been chosen as SMR representative. The approach and the framework of the model can be applied to worldwide countries while the specific results apply to most of the European countries. The results show that SMRs have better performances than LRs with respect to the external factors, in general and in the Italian scenario in particular

    Power system security enhancement by HVDC links using a closed-loop emergency control

    Get PDF
    In recent years, guaranteeing that large-scale interconnected systems operate safely, stably and economically has become a major and emergency issue. A number of high profile blackouts caused by cascading outages have focused attention on this issue. Embedded HVDC (High Voltage Direct Current) links within a larger AC power system are known to act as a “firewall” against cascading disturbances and therefore, can effectively contribute in preventing blackouts. A good example is the 2003 blackout in USA and Canada, where the Québec grid was not affected due to its HVDC interconnection. In the literature, many works have studied the impact of HVDC on the power system stability, but very few examples exist in the area of its impact on the system security. This paper presents a control strategy for HVDC systems to increase their contribution to system security. A real-time closed-loop control scheme is used to modulate the DC power of HVDC links to alleviate AC system overloads and improve system security. Simulations carried out on a simplified model of the Hydro-Québec network show that the proposed method works well and can greatly improve system security during emergency situations.Peer reviewedFinal Accepted Versio

    Does Lost Time Cost You Money and Create High Risk?

    Get PDF
    The aim of the case study is to express the delayed repair time impact on the revenues and profit in numbers with the example of the outage of power plant units. Main steps of risk assessment: • creating project plan suitable for risk assessment • identification of the risk factors for each project activities • scenario-analysis based evaluation of risk factors • selection of the critical risk factors based on the results of quantitative risk analysis • formulating risk response actions for the critical risks • running Monte-Carlo simulation [1] using the results of scenario-analysis • building up a macro which creates the connection among the results of the risk assessment, the production plan and the business plan

    Fully coupled, hygro-thermo-mechanical sensitivity analysis of a pre-stressed concrete pressure vessel

    Get PDF
    Following a recent world wide resurgence in the desire to build and operate nuclear power stations as a response to rising energy demands and global plans to reduce carbon emissions, and in the light of recent events such as those at the Fukushima Dai-ichi nuclear power plant in Japan, which have raised questions of safety, this work has investigated the long term behaviour of concrete nuclear power plant structures.<p></p> A case example of a typical pre-stressed concrete pressure vessel (PCPV), generically similar to several presently in operation in the UK was considered and investigations were made with regard to the extended operation of existing plants beyond their originally planned for operational life spans, and with regard to the construction of new build plants.<p></p> Extensive analyses have been carried out using a fully coupled hygro-thermo-mechanical (HTM) model for concrete. Analyses were initially conducted to determine the current state of a typical PCPV after 33+ years of operation. Parametric and sensitivity studies were then carried out to determine the influence of certain, less well characterised concrete material properties (porosity, moisture content, permeability and thermal conductivity). Further studies investigated the effects of changes to operational conditions including planned and unplanned thermal events.<p></p> As well as demonstrating the capabilities and usefulness of the HTM model in the analysis of such problems, it has been shown that an understanding of the long-term behaviour of these safety–critical structures in response to variations in material properties and loading conditions is extremely important and that further detailed analysis should be conducted in order to provide a rational assessment for life extension.<p></p> It was shown that changes to the operating procedures led to only minor changes in the behaviour of the structure over its life time, but that unplanned thermal excursions, like those seen at the Fukushima Dai-ichi plant could have more significant effects on the concrete structures.<p></p&gt
    • …
    corecore