243 research outputs found

    Dynamics Analysis of Misalignment and Stator Short-Circuit Coupling Fault in Electric Vehicle Range Extender

    Get PDF
    Due to the complex structure and wide excitation of the range extender, the misalignment and stator short-circuit coupling fault can easily occur. Therefore, it is necessary to study the coupling fault mechanism of the range extender, analyze the cause of the fault and the fault evolution law, and research the coupling fault characteristics. To reveal the mechanism of misalignment and stator-short-circuit coupling fault, the misalignment mechanism was analyzed and the bending and torsion electromagnetic stiness of the generator in the stator short-circuit fault was derived. Then the dynamic model of bending and torsion coupling for the generator was established. Furthermore, we used the Runge-Kutta method to study the vibration response characteristics of generator rotor under coupling fault. Then through finite element analysis, the feasibility of coupled fault diagnosis was verified. The results show that the response of the generator rotor not only has the frequency component of single faults, but also new frequency components such as 4.0 and 6.0 harmonic amplitudes of radial vibration and 3.0 harmonic amplitudes of torsional vibration, respectively

    Energy management strategies for fuel cell vehicles: A comprehensive review of the latest progress in modeling, strategies, and future prospects

    Get PDF
    Fuel cell vehicles (FCVs) are considered a promising solution for reducing emissions caused by the transportation sector. An energy management strategy (EMS) is undeniably essential in increasing hydrogen economy, component lifetime, and driving range. While the existing EMSs provide a range of performance levels, they suffer from significant shortcomings in robustness, durability, and adaptability, which prohibit the FCV from reaching its full potential in the vehicle industry. After introducing the fundamental EMS problem, this review article provides a detailed description of the FCV powertrain system modeling, including typical modeling, degradation modeling, and thermal modeling, for designing an EMS. Subsequently, an in-depth analysis of various EMS evolutions, including rule-based and optimization-based, is carried out, along with a thorough review of the recent advances. Unlike similar studies, this paper mainly highlights the significance of the latest contributions, such as advanced control theories, optimization algorithms, artificial intelligence (AI), and multi-stack fuel cell systems (MFCSs). Afterward, the verification methods of EMSs are classified and summarized. Ultimately, this work illuminates future research directions and prospects from multi-disciplinary standpoints for the first time. The overarching goal of this work is to stimulate more innovative thoughts and solutions for improving the operational performance, efficiency, and safety of FCV powertrains

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Advances on Smart Cities and Smart Buildings

    Get PDF
    Modern cities are facing the challenge of combining competitiveness at the global city scale and sustainable urban development to become smart cities. A smart city is a high-tech, intensive and advanced city that connects people, information, and city elements using new technologies in order to create a sustainable, greener city; competitive and innovative commerce; and an increased quality of life. This Special Issue collects the recent advancements in smart cities and covers different topics and aspects

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Power Management Strategy of a Fuel Cell Hybrid Electric Vehicle with Integrated Ultra-Capacitor with Driving Pattern Recognition

    Get PDF
    abstract: The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer charging time which is unfavorable. A fully charged battery gives less range compared to a FCHEV with a full hydrogen tank. So FCHEV has an advantage of a quick fuel up and more mileage than AEVs. A Proton Electron Membrane Fuel Cell (PEMFC) is the commonly used kind of fuel cell vehicles but it possesses slow current dynamics and hence not suitable to be the sole power source in a vehicle. Therefore, improving the transient power capabilities of fuel cell to satisfy the road load demand is critical. This research studies integration of Ultra-Capacitor (UC) to FCHEV. The objective is to analyze the effect of integrating UCs on the transient response of FCHEV powertrain. UCs has higher power density which can overcome slow dynamics of fuel cell. A power management strategy utilizing peak power shaving strategy is implemented. The goal is to decrease power load on batteries and operate fuel cell stack in it’s most efficient region. Complete model to simulate the physical behavior of UC-Integrated FCHEV (UC-FCHEV) is developed using Matlab/SIMULINK. The fuel cell polarization curve is utilized to devise operating points of the fuel cell to maintain its operation at most efficient region. Results show reduction of hydrogen consumption in aggressive US06 drive cycle from 0.29 kg per drive cycle to 0.12 kg. The maximum charge/discharge battery current was reduced from 286 amperes to 110 amperes in US06 drive cycle. Results for the FUDS drive cycle show a reduction in fuel consumption from 0.18 kg to 0.05 kg in one drive cycle. This reduction in current increases the life of the battery since its protected from overcurrent. The SOC profile of the battery also shows that the battery is not discharged to its minimum threshold which increasing the health of the battery based on number of charge/discharge cycles.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Development of a Hybrid-Electric Aircraft Propulsion System Based on Silicon Carbide Triple Active Bridge Multiport Power Converter

    Get PDF
    Constrained by the low energy density of Lithium-ion batteries with all-electric aircraft propulsion, hybrid-electric aircraft propulsion drive becomes one of the most promising technologies in aviation electrification, especially for wide-body airplanes. In this thesis, a three-port triple active bridge (TAB) DC-DC converter is developed to manage the power flow between the turbo generator, battery, and the propulsion motor. The TAB converter is modeled based on the emerging Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) modules operating at high switching frequency, so the size of the magnetic transformer can be significantly reduced. Different operation modes of this hybrid-electric propulsion drive based on the SiC TAB converter are modeled and simulated to replicate the takeoff mode, cruising mode, and regenerative charging mode of a typical flight profile. Additionally, soft switching is investigated for the TAB converter to further improve the efficiency and power density of the converter, and zero voltage switching is achieved at heavy load operating conditions. The results show that the proposed TAB converter is capable of achieving high efficiency during all stages of the flight profile

    Combined misalignments in spur gear transmission systems: a semi-empirical approach

    Get PDF
    Un área inexplorada en el diseño de sistemas de transmisión de engranajes es el estudio de los efectos de desalineamientos combinados en las medidas de vibración. Actualmente, las investigaciones se centran en desalineamientos individuales y no combinados los cuales reflejan mejor los escenarios de aplicaciones reales. En esta investigación se analizan los efectos de los desalineamientos combinados en las mediciones de vibración en la base de los rodamientos y en el esfuerzo de flexión de los dientes de engranajes rectos de un sistema de transmisión de una etapa. Se diseñó y construyó un banco de pruebas para generar desalineamientos radiales, axiales y angulares en un sistema de transmisión de engranajes de una etapa. Se evaluaron todas las combinaciones posibles de niveles extremos de desalineamiento para un par de engranajes rectos para identificar tendencias en la respuesta vibratoria. Se desarrolló un modelo teórico del área de contacto proyectada para estudiar la relación entre esta y la respuesta vibratoria. Al analizar el cambio en los espectros, se determinó la influencia de diferentes desalineamientos y sus interacciones en las mediciones de vibración. Finalmente, se desarrolló un modelo híbrido para estimar las aceleraciones en los rodamientos, utilizando un modelo de elementos finitos para determinar el esfuerzo de flexión en los dientes y un modelo analítico para estimar las señales de vibración en los rodamientos. El modelo demostró una alta correlación en comparación con los resultados experimentales, validando su efectividad. Finalmente, se propusieron recomendaciones de diseño considerando las zonas de esfuerzo y vibración de interés.DoctoradoDoctor en Ingeniería Mecánic

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models
    corecore