260,949 research outputs found

    (SI10-124) Inverse Reconstruction Methodologies: A Review

    Get PDF
    The three-dimensional reconstruction problem is a longstanding ill-posed problem, which has made enormous progress in the field of computer vision. This field has attracted increasing interest and demonstrated an impressive performance. Due to a long era of increasing evolution, this paper presents an extensive review of the developments made in this field. For the three dimensional visualization, researchers have focused on the developments of three dimensional information and acquisition methodologies from two dimensional scenes or objects. These acquisition methodologies require a complex calibration procedure which is not practical in general. Hence, the requirement of flexibility was much needed in all these methods. Due to this emerging factors, many techniques were presented. The methodologies are organized on the basis of different aspects of the three dimensional reconstruction like active method, passive method, different geometrical shapes, etc. A brief analysis and comparison of the performance of these methodologies are also presented

    Devices to measure calf raise test outcomes: A narrative review.

    Get PDF
    BACKGROUND: The calf raise test (CRT) is commonly administered without a device in clinics to measure triceps surae muscle function. To standardise and objectively quantify outcomes, researchers use research-grade or customised CRT devices. To incorporate evidence-based practice and apply testing devices effectively in clinics, it is essential to understand their design, applicability, psychometric properties, strengths, and limitations. Therefore, this review identifies, summarises, and critically appraises the CRT devices used in science. METHODS: Four electronic databases were searched in April 2022. Studies that used devices to measure unilateral CRT outcomes (i.e., number of repetitions, work, height) were included. RESULTS: Thirty-five studies met inclusion, from which seven CRT devices were identified. Linear encoder (n = 18) was the most commonly used device, followed by laboratory equipment (n = 6) (three-dimensional motion capture and force plate). These measured the three CRT outcomes. Other devices used were electrogoniometer, Häggmark and Liedberg light beam device, Ankle Measure for Endurance and Strength (AMES), Haberometer, and custom-made. Devices were mostly used in healthy populations or Achilles tendon pathologies. AMES, Haberometer, and custom-made devices were the most clinician-friendly, but only quantified repetitions were completed. In late 2022, a computer vision mobile application appeared in the literature and offered clinicians a low-cost, research-grade alternative. CONCLUSION: This review details seven devices used to measure CRT outcomes. The linear encoder is the most common in research and quantifies all three CRT outcomes. Recent advances in computer-vision provide a low-cost research-grade alternative to clinicians and researchers via a n iOS mobile application

    Assessment of grape cluster yield components based on 3D descriptors using stereo vision

    Full text link
    NOTICE: this is the author’s version of a work that was accepted for publication in Food Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Control, [Volume 50, April 2015, Pages 273–282] DOI 10.1016/j.foodcont.2014.09.004Wine quality depends mostly on the features of the grapes it is made from. Cluster and berry morphology are key factors in determining grape and wine quality. However, current practices for grapevine quality estimation require time-consuming destructive analysis or largely subjective judgment by experts. The purpose of this paper is to propose a three-dimensional computer vision approach to assessing grape yield components based on new 3D descriptors. To achieve this, firstly a partial three-dimensional model of the grapevine cluster is extracted using stereo vision. After that a number of grapevine quality components are predicted using SVM models based on new 3D descriptors. Experiments confirm that this approach is capable of predicting the main cluster yield components, which are related to quality, such as cluster compactness and berry size (R2 > 0.80, p < 0.05). In addition, other yield components: cluster volume, total berry weight and number of berries, were also estimated using SVM models, obtaining prediction R2 of 0.82, 0.83 and 0.71, respectively.This work has been partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA - Spanish National Institute for Agriculture and Food Research and Technology) through research project RTA2012-00062-C04-02, support of European FEDER funds, UPV-SP20120276 and AGL2011-23673 project.Ivorra Martínez, E.; Sánchez Salmerón, AJ.; Camarasa Baixauli, JG.; Diago, M.; Tardaguila, J. (2015). Assessment of grape cluster yield components based on 3D descriptors using stereo vision. Food Control. 50:273-282. https://doi.org/10.1016/j.foodcont.2014.09.004S2732825

    Applications of 3D Photography in Craniofacial Surgery

    Get PDF
    Three-dimensional (3D) photography is becoming more common in craniosynostosis practice and may be used for research, archiving, and as a planning tool. In this article, an overview of the uses of 3D photography will be given, including systems available and illustrations of how they can be used. Important innovations in 3D computer vision will also be discussed, including the potential role of statistical shape modeling and analysis as an outcomes tool with presentation of some results and a review of the literature on the topic. Potential future applications in diagnostics using machine learning will also be presented

    Distinguishing wet from dry age-related macular degeneration using three-dimensional computer-automated threshold Amsler grid testing

    Get PDF
    Background/aims: With the increased efficacy of current therapy for wet age-related macular degeneration (AMD), better ways to detect wet AMD are needed. This study was designed to test the ability of three-dimensional contrast threshold Amsler grid (3D-CTAG) testing to distinguish wet AMD from dry AMD. Methods: Conventional paper Amsler grid and 3D-CTAG tests were performed in 90 eyes: 63 with AMD (34 dry, 29 wet) and 27 controls. Qualitative comparisons were based upon the three-dimensional shapes of central visual field (VF) defects. Quantitative analyses considered the number and volume of the three-dimensional defects. Results: 25/34 (74%) dry AMD and 6/29 (21%) wet AMD eyes had no distortions on paper Amsler grid. Of these, 5/25 (20%) dry and 6/6 (100%) wet (p=0.03) AMD eyes exhibited central VF defects with 3D-CTAG. Wet AMD displayed stepped defects in 16/28 (57%) eyes, compared with only 2/34 (6%) of dry AMD eyes (p=0.002). All three volumetric indices of VF defects were two- to four-fold greater in wet than dry AMD (p<0.006). 3D-CTAG had 83.9% positive and 90.6% negative predictive values for wet AMD. Conclusions: 3D-CTAG has a higher likelihood of detecting central VF defects than conventional Amsler grid, especially in wet AMD. Wet AMD can be distinguished from dry AMD by qualitative and quantitative 3D-CTAG criteria. Thus, 3D-CTAG may be useful in screening for wet AMD, quantitating disease severity, and providing a quantitative outcome measure of therapy

    Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique

    Get PDF
    For the past two decades, the need for three-dimensional (3-D) scanning of industrial objects has increased significantly and many experimental techniques and commercial solutions have been proposed. However, difficulties remain for the acquisition of optically non-cooperative surfaces, such as transparent or specular surfaces. To address highly reflective metallic surfaces, we propose the extension of a technique that was originally dedicated to glass objects. In contrast to conventional active triangulation techniques that measure the reflection of visible radiation, we measure the thermal emission of a surface, which is locally heated by a laser source. Considering the thermophysical properties of metals, we present a simulation model of heat exchanges that are induced by the process, helping to demonstrate its feasibility on specular metallic surfaces and predicting the settings of the system. With our experimental device, we have validated the theoretical modeling and computed some 3-D point clouds from specular surfaces of various geometries. Furthermore, a comparison of our results with those of a conventional system on specular and diffuse parts will highlight that the accuracy of the measurement no longer depends on the roughness of the surface
    corecore