536 research outputs found

    Title redacted for blind review

    Get PDF
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which embeds GL within the modal μ\mu-calculus. Via correspondence results between modal logic and the bisimulation-invariant fragment of second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the notion of 'intuition-that'. I argue that intuition-that can further be shown to entrain conceptual elucidation, by way of figuring as a dynamic-interpretational modality which induces the reinterpretation of both domains of quantification and the intensions and hyperintensions of mathematical concepts that are formalizable in monadic first- and second-order formal languages. Hyperintensionality is countenanced via four models, without a decision as to which model is to be preferred. The first model makes intuition sensitive to hyperintensional topics, i.e. subject matters. The second model is a hyperintensional truthmaker semantics, in particular a novel epistemic two-dimensional truthmaker semantics. The third model is a topic-sensitive non-truthmaker epistemic two-dimensional semantics. The fourth model is a topic-sensitive epistemic two-dimensional truthmaker semantics

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Characterization, definability and separation via saturated models

    Get PDF
    Three important results about the expressivity of a modal logic L are the Characterization Theorem (that identifies a modal logic L as a fragment of a better known logic), the Definability theorem (that provides conditions under which a class of L-models can be defined by a formula or a set of formulas of L), and the Separation Theorem (that provides conditions under which two disjoint classes of L-models can be separated by a class definable in L). We provide general conditions under which these results can be established for a given choice of model class and modal language whose expressivity is below first order logic. Besides some basic constraints that most modal logics easily satisfy, the fundamental condition that we require is that the class of ω-saturated models in question has the Hennessy-Milner property with respect to the notion of observational equivalence under consideration. Given that the Characterization, Definability and Separation theorems are among the cornerstones in the model theory of L, this property can be seen as a test that identifies the adequate notion of observational equivalence for a particular modal logic.submittedVersionFil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Carreiro, Facundo. Universidad de Ámsterdam. Instituto de Lógica, Lenguaje y Computación; Países Bajos.Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina.Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Ciencias de la Computació

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Detecting bots with temporal logic

    Get PDF
    Social bots are computer programs that act like human users on social media platforms. Social bot detection is a rapidly growing field dominated by machine learning approaches. In this paper, we propose a complementary method to machine learning by exploring bot detection as a model checking problem. We introduce Temporal Network Logic (TNL) which we use to specify social networks where agents can post and follow each other. Using this logic, we formalize different types of social bot behavior with formulas that are satisfied in a model of a network with bots. We also consider an extension of the logic where we explore the expressive power of including elements from hybrid logic in our framework. We give model checking algorithms for TNL and its hybrid extension, and show that the complexity of the former is in P and the latter in PSPACE.publishedVersio
    corecore