2,876 research outputs found

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    DEVELOPMENT OF A POST-FABRICATION STIFFNESS CHARACTERIZATION TOOL FOR MEMS

    Get PDF
    Micro-Electromechanical Systems (MEMS) manufacturers face difficulties in characterizing material properties of MEMS post production. Properties such as stiffness can be obtained from simultaneous force and displacement measurements in full-field. We developed a prototype MEMS metrology system that uses a sub-micro Newton resolution force probe operating under a nanometer resolution interferometer to characterize MEMS mechanical properties. FEA simulations and analytical calculations were performed to help determine system constraints and validate results. Precision actuators were integrated and controlled from a developed graphical user interface. The system was tested on an Analog Devices ADXL202 accelerometer

    Intelligent sampling for the measurement of structured surfaces

    Get PDF
    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed

    Scanning micro interferometer with tunable diffraction grating for low noise parallel operation

    Get PDF
    Large area high throughput metrology plays an important role in several technologies like MEMS. In current metrology systems the parallel operation of multiple metrology probes in a tool has been hindered by their bulky sizes. This study approaches this problem by developing a metrology technique based on miniaturized scanning grating interferometers (ÎŒSGIs). Miniaturization of the interferometer is realized by novel micromachined tunable gratings fabricated using SOI substrates. These stress free flat gratings show sufficient motion (~500nm), bandwidth (~50 kHz) and low damping ratio (~0.05). Optical setups have been developed for testing the performance of ÎŒSGIs and preliminary results show 6.6 ÎŒm lateral resolution and sub-angstrom vertical resolution. To achieve high resolution and to reduce the effect of ambient vibrations, the study has developed a novel control algorithm, implemented on FPGA. It has shown significant reduction of vibration noise in 6.5 kHz bandwidth achieving 6x10-5 nmrms/√Hz noise resolution. Modifications of this control scheme enable long range displacement measurements, parallel operation and scanning samples for their dynamic profile. To analyze and simulate similar optical metrology system with active micro-components, separate tools are developed for mechanical, control and optical sub-systems. The results of these programs enable better design optimization for different applications.Ph.D.Committee Chair: Degertekin, Levent; Committee Co-Chair: Kurfess, Thomas; Committee Member: Adibi, Ali; Committee Member: Danyluk, Steven; Committee Member: Hesketh, Pete

    MEMS practice, from the lab to the telescope

    Full text link
    Micro-electro-mechanical systems (MEMS) technology can provide for deformable mirrors (DMs) with excellent performance within a favorable economy of scale. Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our decade of practice with the micromirrors, from inspecting and characterizing devices to evaluating their performance in the lab. We also show MEMS wavefront correction on-sky with the "Villages" AO system on a 1-m telescope, including open-loop control and visible-light imaging. Our work demonstrates the maturity of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201

    City Natural Gas Metering

    Get PDF

    Analysis of effective mechanical properties of thin films used in microelectromechanical systems

    Get PDF
    This research aims at analyzing the effective mechanical properties of thin film materials that are used in MEMS. Using the effective mechanical properties, reliable simulations of new or slightly altered designs can be performed successfully. The main reason for investigating effective material properties of MEMS devices is that the existing techniques can not provide consistent prediction of the mechanical properties without time-consuming and costly physical prototyping if the device or the fabrication recipe is slightly altered. To achieve this goal, two approaches were investigated: soft computing and analytical. In the soft computing approach, the effective material properties are empirically modeled and estimated based on experimental data and the relationships between the parameters affecting the mechanical properties of devices are discovered. In this approach, 2D-search, Micro Genetic Algorithms, Neural networks, and Radial Basis Functions Networks were explored for the search of the effective material properties of the thin films with the help of a Finite Element Analysis (FEA) and modeling the mechanical behavior such that the effective material properties can be estimated for a new device. In the analytical approach, the physical behavior of the thin films is modeled analytically using standard elastic theories such as Stoney’s formulae. As a case study, bilayer cantilevers of various dimensions were fabricated for extracting the effective Young’s modulus of thin film materials: Aluminum, TetraEthylOrthoSilicate (TEOS)-based SiO2, and Polyimide. In addition, a Matlab¼ graphical user interface (GUI), STEAM, is developed which interfaces with Ansys¼. In STEAM, a fuzzy confidence factor is also developed to validate the reliability of the estimates based on factors such as facility and recipe-dependent variables. The results obtained from both approaches generated comparable effective material properties which are in accord with the experimental measurements. The results show that effective material properties of thin films can be estimated so that reliable MEMS devices can be designed without timely and costly physical prototyping

    Low-Cost and High-Performance Solution for Positioning and Monitoring of Large Structures

    Get PDF
    Systems for accurate attitude and position monitoring of large structures, such as bridges, tunnels, and offshore platforms are changing in recent years thanks to the exploitation of sensors based on Micro-ElectroMechanical Systems (MEMS) as an Inertial Measurement Unit (IMU). Currently adopted solutions are, in fact, mainly based on fiber optic sensors (characterized by high performance in attitude estimation to the detriment of relevant costs large volumes and heavy weights) and integrated with a Global Position System (GPS) capable of providing low-frequency or single-update information about the position. To provide a cost-effective alternative and overcome the limitations in terms of dimensions and position update frequency, a suitable solution and a corresponding prototype, exhibiting performance very close to those of the traditional solutions, are presented and described hereinafter. The solution leverages a real-time Kalman filter that, along with the proper features of the MEMS inertial sensor and Real-Time Kinematic (RTK) GPS, allows achieving performance in terms of attitude and position estimates suitable for this kind of application. The results obtained in a number of tests underline the promising reliability and effectiveness of the solution in estimating the attitude and position of large structures. In particular, several tests carried out in the laboratory highlighted high system stability; standard deviations of attitude estimates as low as 0.04 degrees were, in fact, experienced in tests conducted in static conditions. Moreover, the prototype performance was also compared with a fiber optic sensor in tests emulating actual operating conditions; differences in the order of a few hundredths of a degree were found in the attitude measurements

    On the feasibility of integrated optical waveguide-based in situ monitoring of microelectromechanical systems (MEMS)

    Get PDF
    This dissertation explores the feasibility of using integrated optical waveguides to measure the motion of microelectromechanical structures (MEMS). MEMS are a class of silicon devices which are being developed as sensors and actuators. Because these free moving structures are fabricated using processes similar to microfabrication, MEMS devices and traditional electronics can be integrated on the same substrate. This merging of the technologies will allow the miniaturization of large scale mechanical systems. A difficulty with MEMS devices is determining the submicron motion. One method of noninvasive measurement is optical measurement. Research focused on the characterization of one particular MEMS device, a linear comb resonator. Linear comb resonators displace linearly along a single axis when drive with a sinusoidal voltage signal. This research presents how single mode and multimode guided waves have potential to yield significant positional information. Using optical fibers to create a bulk optical metrology probe, the displacement and operating frequency of this device was characterized. Integration of this an optical probe structure with the MEMS devices can create integrated optical metrology (IOM), which is an in-situ method of device characterization and can represent an enabling technology for MEMS. Co-integration of the two technologies can be achieved through either processing or post processing of integrated waveguides with the MEMS devices. The fabrication process for co-integration of polymer optical waveguides has been experimentally defined in this dissertation, however final results indicate guides wave IOM would best be explored through process interruption or hybrid techniques given existing polymer materials. Analysis yields that the co-integration of inorganic waveguide structures first requires optimization of the design of the microprobe layout
    • 

    corecore