6,182 research outputs found

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011

    Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins

    Full text link
    In this paper, we study the structure and dynamical properties of protein contact networks with respect to other biological networks, together with simulated archetypal models acting as probes. We consider both classical topological descriptors, such as the modularity and statistics of the shortest paths, and different interpretations in terms of diffusion provided by the discrete heat kernel, which is elaborated from the normalized graph Laplacians. A principal component analysis shows high discrimination among the network types, either by considering the topological and heat kernel based vector characterizations. Furthermore, a canonical correlation analysis demonstrates the strong agreement among those two characterizations, providing thus an important justification in terms of interpretability for the heat kernel. Finally, and most importantly, the focused analysis of the heat kernel provides a way to yield insights on the fact that proteins have to satisfy specific structural design constraints that the other considered networks do not need to obey. Notably, the heat trace decay of an ensemble of varying-size proteins denotes subdiffusion, a peculiar property of proteins

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Recurrence networks - A novel paradigm for nonlinear time series analysis

    Get PDF
    This paper presents a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. It is demonstrated that there are fundamental relationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis

    Mathematics at the eve of a historic transition in biology

    Full text link
    A century ago physicists and mathematicians worked in tandem and established quantum mechanism. Indeed, algebras, partial differential equations, group theory, and functional analysis underpin the foundation of quantum mechanism. Currently, biology is undergoing a historic transition from qualitative, phenomenological and descriptive to quantitative, analytical and predictive. Mathematics, again, becomes a driving force behind this new transition in biology.Comment: 5 pages, 2 figure

    Structural patterns in complex networks through spectral analysis

    Get PDF
    The study of some structural properties of networks is introduced from a graph spectral perspective. First, subgraph centrality of nodes is defined and used to classify essential proteins in a proteomic map. This index is then used to produce a method that allows the identification of superhomogeneous networks. At the same time this method classify non-homogeneous network into three universal classes of structure. We give examples of these classes from networks in different real-world scenarios. Finally, a communicability function is studied and showed as an alternative for defining communities in complex networks. Using this approach a community is unambiguously defined and an algorithm for its identification is proposed and exemplified in a real-world network
    corecore