1,189 research outputs found

    Review of automated systems for upper limbs functional assessment in neurorehabilitation

    Get PDF
    Traditionally, the assessment of upper limb (UL) motor function in neurorehabilitation is carried out by clinicians using standard clinical tests for objective evaluation, but which could be influenced by the clinician's subjectivity or expertise. The automation of such traditional outcome measures (tests) is an interesting and emerging field in neurorehabilitation. In this paper, a systematic review of systems focused on automation of traditional tests for assessment of UL motor function used in neurological rehabilitation is presented. A systematic search and review of related articles in the literature were conducted. The chosen works were analyzed according to the automation level, the data acquisition systems, the outcome generation method, and the focus of assessment. Finally, a series of technical requirements, guidelines, and challenges that must be considered when designing and implementing fully-automated systems for upper extremity functional assessment are summarized. This paper advocates the use of automated assessment systems (AAS) to build a rehabilitation framework that is more autonomous and objective.This work was supported in part by the Spanish Ministry of Economy and Competitiveness via the ROBOHEALTH (DPI2013-47944-C4-1-R) and ROBOESPAS (DPI2017-87562-C2-1-R) Projects, and in part by the RoboCity2030-III-CM project (S2013/MIT-2748) which is funded by the Programas de Actividades I+D Comunidad de Madrid and cofunded by the Structural Funds of the EU

    Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review

    Get PDF
    This article belongs to the Special Issue Sensors Technology for Medical Robotics.Spasticity is a motor disorder that causes stiffness or tightness of the muscles and can interfere with normal movement, speech, and gait. Traditionally, the spasticity assessment is carried out by clinicians using standardized procedures for objective evaluation. However, these procedures are manually performed and, thereby, they could be influenced by the clinician’s subjectivity or expertise. The automation of such traditional methods for spasticity evaluation is an interesting and emerging field in neurorehabilitation. One of the most promising approaches is the use of robot-aided systems. In this paper, a systematic review of systems focused on the assessment of upper limb (UL) spasticity using robotic technology is presented. A systematic search and review of related articles in the literature were conducted. The chosen works were analyzed according to the morphology of devices, the data acquisition systems, the outcome generation method, and the focus of intervention (assessment and/or training). Finally, a series of guidelines and challenges that must be considered when designing and implementing fully-automated robot-aided systems for the assessment of UL spasticity are summarized

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke is a frequent cause of adult disability that can lead to enduring impairments. However, given the life-long plasticity of the brain one could assume that recovery could be facilitated by the harnessing of mechanisms underlying neuronal reorganization. Currently it is not clear how this reorganization can be mobilized. Novel technology based neurorehabilitation techniques hold promise to address this issue. Here we describe a Virtual Reality (VR) based system, the Rehabilitation Gaming System (RGS) that is based on a number of hypotheses on the neuronal mechanisms underlying recovery, the structure of training and the role of individualization. We investigate the psychometrics of the RGS in stroke patients and healthy controls.</p> <p>Methods</p> <p>We describe the key components of the RGS and the psychometrics of one rehabilitation scenario called Spheroids. We performed trials with 21 acute/subacute stroke patients and 20 healthy controls to study the effect of the training parameters on task performance. This allowed us to develop a Personalized Training Module (PTM) for online adjustment of task difficulty. In addition, we studied task transfer between physical and virtual environments. Finally, we assessed the usability and acceptance of the RGS as a rehabilitation tool.</p> <p>Results</p> <p>We show that the PTM implemented in RGS allows us to effectively adjust the difficulty and the parameters of the task to the user by capturing specific features of the movements of the arms. The results reported here also show a consistent transfer of movement kinematics between physical and virtual tasks. Moreover, our usability assessment shows that the RGS is highly accepted by stroke patients as a rehabilitation tool.</p> <p>Conclusions</p> <p>We introduce a novel VR based paradigm for neurorehabilitation, RGS, which combines specific rehabilitative principles with a psychometric evaluation to provide a personalized and automated training. Our results show that the RGS effectively adjusts to the individual features of the user, allowing for an unsupervised deployment of individualized rehabilitation protocols.</p

    Seven Capital Devices for the Future of Stroke Rehabilitation

    Get PDF

    After Stroke Movement Impairments: A Review of Current Technologies for Rehabilitation

    Get PDF
    This chapter presents a review of the rehabilitation technologies for people who have suffered a stroke, comparing and analyzing the impact that these technologies have on their recovery in the short and long term. The problematic is presented, and motor impairments for upper and lower limbs are characterized. The goal of this chapter is to show novel trends and research for the assistance and treatment of motor impairment caused by strokes

    Robotic neurorehabilitation: a computational motor learning perspective

    Get PDF
    Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols

    Movement Rehabilitation in Physiotherapy after Stroke: The Role of Constraint-Induced Movement Therapy

    Get PDF
    Stroke is increasingly becoming a global health problem. This is because it may lead to death, Long-term disability such as in motor function, and significant burden to the patients and their families. The disability can be prevented or rehabilitated using a physiotherapy technique known as constraint-induced movement therapy (CIMT). The CIMT comprises of task practice with the affected limb, constraint of the unaffected limb, and transfer package to foster compliance and increase the amount of task repetition. It helps to reestablish normal motor control through facilitating changes in physiological functions of the brain, improvement in real-world arm use, and movement precision and quality. However, its protocols vary. Some protocols use number of hours and others use number of repetitions to determine the intensity or the amount of task practice. This chapter argued that CIMT is effective, but the protocols that use a number of hours of task practice are not clear and are resource intensive; and as such they could interfere with the process of clinical decision making. Consequently, it proposed the use of a number of repetitions of task practice to determine the intensity or the amount of task practice and extending the application of CIMT to those with severe impairments after stroke

    A Therapeutic Approach Using the Combined Application of Virtual Reality with Robotics for the Treatment of Patients with Spinal Cord Injury: A Systematic Review

    Get PDF
    Spinal cord injury (SCI) has been associated with high mortality rates. Thanks to the multidisciplinary vision and approach of SCI, including the application of new technologies in the field of neurorehabilitation, people with SCI can survive and prosper after injury. The main aim of this systematic review was to analyze the effectiveness of the combined use of VR and robotics in the treatment of patients with SCI. The literature search was performed between May and July 2021 in the Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database (PEDro), PubMed, and Web of Science. The methodological quality of each study was assessed using the SCIRE system and the PEDro scale, whereas the risk of bias was analyzed using the Cochrane Collaboration’s tool. A total of six studies, involving 63 participants, were included in this systematic review. Relevant changes were found in the upper limbs, with improvements of shoulder and upper arm mobility, as well as the strengthening of weaker muscles. Combined rehabilitation may be a valuable approach to improve motor function in SCI patients. Nonetheless, further research is necessary, with a larger patient sample and a longer duration
    corecore