73 research outputs found

    A comparison between MMAE and SCEM for solving singularly perturbed linear boundary layer problems

    Get PDF
    In this study, we propose an efficient method so-called Successive Complementary Expansion Method (SCEM), that is based on generalized asymptotic expansions, for approximating to the solutions of singularly perturbed two-point boundary value problems. In this easy-applicable method, in contrast to the well-known method the Method of Matched Asymptotic Expansions (MMAE), any matching process is not required to obtain uniformly valid approximations. The key point: A uniformly valid approximation is adopted first, and complementary functions are obtained imposing the corresponding boundary conditions. An illustrative and two numerical experiments are provided to show the implementation and numerical properties of the present method. Furthermore, MMAE results are also obtained in order to compare the numerical robustnesses of the methods.No sponso

    A preliminary investigation into the effects of nonlinear response modification within coupled oscillators

    Get PDF
    This thesis provides an account of an investigation into possible dynamic interactions between two coupled nonlinear sub-systems, each possessing opposing nonlinear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two degree-of-freedom Duffing oscillator coupled in series in which certain nonlinear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently nonlinear, and which is coupled to a bar-horn or block-horn to one, or more, material cutting blades, for example. The horn/blade configurations are also nonlinear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall nonlinear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also bfeen shown experimentally that coupling of ultrasonic components with different nonlinear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice

    A wave equation perturbed by viscous terms: fast and slow times diffusion effects in a Neumann problem

    Full text link
    A Neumann problem for a wave equation perturbed by viscous terms with small parameters is considered. The interaction of waves with the diffusion effects caused by a higher-order derivative with small coefficient {\epsilon}, is investigated. Results obtained prove that for slow time {\epsilon}t < 1 waves are propagated almost undisturbed, while for fast time t > 1 {\epsilon} diffusion effects prevail.Comment: Ricerche di Matematica (2018
    corecore