393 research outputs found

    Application of Generic CAD Models for Supporting Feature Based Assembly Process Planning

    Get PDF
    The paper discusses a novel geometric reasoning method that supports the definition of assembly sequence planning models departing from the CAD models of the parts involved. Specifically, by means of the presented algorithms that use a so-called collision point cloud approach one can determine the precise disassembly directions of parts having complex polygon mesh models. This information can be applied when defining assembly planning models both for suggesting precedence constraints as well as parameters for assembly operations. The presented heuristic algorithm was able to overcome certain shortcomings of earlier methods working with polygon mesh representations, and proved to be successful both in handling abstract and real-life industrial use cases. Working examples from both categories are presented in the paper

    Optimal Robotic Assembly Sequence Planning: A Sequential Decision-Making Approach

    Full text link
    The optimal robot assembly planning problem is challenging due to the necessity of finding the optimal solution amongst an exponentially vast number of possible plans, all while satisfying a selection of constraints. Traditionally, robotic assembly planning problems have been solved using heuristics, but these methods are specific to a given objective structure or set of problem parameters. In this paper, we propose a novel approach to robotic assembly planning that poses assembly sequencing as a sequential decision making problem, enabling us to harness methods that far outperform the state-of-the-art. We formulate the problem as a Markov Decision Process (MDP) and utilize Dynamic Programming (DP) to find optimal assembly policies for moderately sized strictures. We further expand our framework to exploit the deterministic nature of assembly planning and introduce a class of optimal Graph Exploration Assembly Planners (GEAPs). For larger structures, we show how Reinforcement Learning (RL) enables us to learn policies that generate high reward assembly sequences. We evaluate our approach on a variety of robotic assembly problems, such as the assembly of the Hubble Space Telescope, the International Space Station, and the James Webb Space Telescope. We further showcase how our DP, GEAP, and RL implementations are capable of finding optimal solutions under a variety of different objective functions and how our formulation allows us to translate precedence constraints to branch pruning and thus further improve performance. We have published our code at https://github.com/labicon/ORASP-Code.Comment: 6 conference page paper, 3 page appendix, 23 figure

    Assemble Them All: Physics-Based Planning for Generalizable Assembly by Disassembly

    Full text link
    Assembly planning is the core of automating product assembly, maintenance, and recycling for modern industrial manufacturing. Despite its importance and long history of research, planning for mechanical assemblies when given the final assembled state remains a challenging problem. This is due to the complexity of dealing with arbitrary 3D shapes and the highly constrained motion required for real-world assemblies. In this work, we propose a novel method to efficiently plan physically plausible assembly motion and sequences for real-world assemblies. Our method leverages the assembly-by-disassembly principle and physics-based simulation to efficiently explore a reduced search space. To evaluate the generality of our method, we define a large-scale dataset consisting of thousands of physically valid industrial assemblies with a variety of assembly motions required. Our experiments on this new benchmark demonstrate we achieve a state-of-the-art success rate and the highest computational efficiency compared to other baseline algorithms. Our method also generalizes to rotational assemblies (e.g., screws and puzzles) and solves 80-part assemblies within several minutes.Comment: Accepted by SIGGRAPH Asia 2022. Project website: http://assembly.csail.mit.edu

    Disassembly 4.0: a review on using robotics in disassembly tasks as a way of automation

    Get PDF
    To successfully implement circular economy processes into present value chains, economic feasibility of disassembly processes is essential. Current developments in science and technology, such as artificial intelligence and Internet of Things, foster steep progression in the field of robotics. In this review, the current research on robotics in disassembly is investigated by a systematic literature review. The results were clustered in a framework system distinguishing between applied and basic research on the two main streams of disassembly automation research, namely, predefined processes and adaptable, flexible automation

    Robust 2D Assembly Sequencing via Geometric Planning with Learned Scores

    Full text link
    To compute robust 2D assembly plans, we present an approach that combines geometric planning with a deep neural network. We train the network using the Box2D physics simulator with added stochastic noise to yield robustness scores--the success probabilities of planned assembly motions. As running a simulation for every assembly motion is impractical, we train a convolutional neural network to map assembly operations, given as an image pair of the subassemblies before and after they are mated, to a robustness score. The neural network prediction is used within a planner to quickly prune out motions that are not robust. We demonstrate this approach on two-handed planar assemblies, where the motions are one-step translations. Results suggest that the neural network can learn robustness to plan robust sequences an order of magnitude faster than physics simulation.Comment: Presented at the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE

    Engineering Support Systems for Industrial Machines and Plants

    Get PDF
    In the business of industrial machines and plants, rapid and detailed estimates for planning installation, replacement of equipment, or maintenance work are key requirements for meeting the demands for greater reliability, lower costs and for maintaining safe and secure operation. These demands have been addressed by developing technology driven by IT. When replacing equipment at complex building or plants with high equipment density, the existing state of the installation locations and transportation routes for old and new equipment need to be properly measured. We have met this need by developing parts recognition technology based on 3D measurement, and by developing high-speed calculation technology of optimal routes for installation parts. This chapter provides an overview of these development projects with some real business application results

    Π’Ρ‹Π±ΠΎΡ€ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сборки издСлия ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡Π° принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ

    Get PDF
    Automated synthesis of computer-aided assembly planning (CAAP) processes is a crucial task for engineering practice and design theory. It is of especial relevance for modern robotic industries, which need in technological assembly instructions to be described in-depth and in-detail as much as possible. The assembly sequence is a key design decision on which many operational properties of the product and economic characteristics of production depend.Choosing a rational assembly sequence planning (ASP) is a challenge. It requires significant computing resources and taking into consideration a large number of technical parameters and economic characteristics that affect the quality of design alternatives. Insights into the quality of alternatives are given as the expert’s preferences rather than as the numerical criteria.The abovementioned features do not allow us to apply the classical optimization methods or mathematical programming for making ASP decision. For this, most modern publications offer various search engine optimization methods based on biological and behavioral analogies. In this paradigm, it is believed that a set of acceptable alternatives that form the original choice space is a priori known. In most design situations this presumption is unrealistic.In engineering practice, considerable technological knowledge about the assembly of products for different function purposes is gained. These are mostly ad hoc data that exist in the form of rules, recommendations, recipes, heuristics, expert preferences, descriptions of successful precedents, etc. The paper suggests a new method for a choice of the rational assembly sequence based on the use of the decision theory apparatus. The proposal contains formalization of important design and technological heuristics, namely consistency with the dimensional chain system, geometric β€œfreedom” during assembly, monotony in size, weight, accuracy, etc.A set of choice functions is open and can be completed by additional choice functions that describe engineering heuristics and decision rules that are relevant in the given design situation. The proposed approach allows the assessment and choice of alternatives according to several aspects or criteria. To do this, it is possible to use various methods of generating a common choice function from the totality of particular functions.Автоматизированный синтСз процСссов сборки слоТных тСхничСских систСм (Computer aided assembly planning, CAAP) – это ваТная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ проСктирования. Она особСнно Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° для соврСмСнных Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… производств, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тСхнологичСскиС инструкции Π½Π° сборку Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ описаны с ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ ΠΈ Π΄Π΅Ρ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ. ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сборки прСдставляСт собой ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ зависят ΠΌΠ½ΠΎΠ³ΠΈΠ΅ эксплуатационныС свойства издСлия ΠΈ экономичСскиС характСристики производства.Π’Ρ‹Π±ΠΎΡ€ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сборки (Assembly sequence planning, ASP) – это Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡ€Π΅ΡˆΠ°Π΅ΠΌΠ°Ρ Π·Π°Π΄Π°Ρ‡Π°. Она Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… рСсурсов ΠΈ ΡƒΡ‡Π΅Ρ‚Π° большого числа тСхничСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ экономичСских характСристик, Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° качСство ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½Ρ‹Ρ… Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΈΡ ΠΎ качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ² Π·Π°Π΄Π°Π½Ρ‹ Π½Π΅ Π² Π²ΠΈΠ΄Π΅ числовых ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π², Π° Π² Ρ„ΠΎΡ€ΠΌΠ΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠΉ экспСрта.ΠŸΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Π΅ особСнности Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ASP классичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ»ΠΈ матСматичСского программирования. Для этого Π² большСй части соврСмСнных ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ поисковой ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, основанныС Π½Π° биологичСских ΠΈ повСдСнчСских аналогиях. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π΄ΠΈΠ³ΠΌΠ΅ считаСтся, Ρ‡Ρ‚ΠΎ Π°ΠΏΡ€ΠΈΠΎΡ€ΠΈ извСстно мноТСство допустимых Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ², ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅Π΅ исходноС пространство Π²Ρ‹Π±ΠΎΡ€Π°. Π­Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ являСтся нСрСалистичным Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½Ρ‹Ρ… ситуаций.Π’ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΎ мноТСство тСхнологичСских Π·Π½Π°Π½ΠΈΠΉ ΠΎ сборкС ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ назначСния. Π’ своСм Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅, это – Π½Π΅Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ ΠΏΡ€Π°Π²ΠΈΠ», Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ, Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΠ², эвристик, ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠΉ экспСрта, описаний ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹Ρ… ΠΏΡ€Π΅Ρ†Π΅Π΄Π΅Π½Ρ‚ΠΎΠ² ΠΈ Π΄Ρ€. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдлагаСтся Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π²Ρ‹Π±ΠΎΡ€Π° Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сборки, основанный Π½Π° использовании Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Ρ‚Π΅ΠΎΡ€ΠΈΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° формализация Π²Π°ΠΆΠ½Ρ‹Ρ… конструкторских ΠΈ тСхнологичСских эвристик: ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ с систСмой Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ†Π΅ΠΏΠ΅ΠΉ, гСомСтричСская «свобода» ΠΏΡ€ΠΈ сборкС, ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ Π³Π°Π±Π°Ρ€ΠΈΡ‚Π°ΠΌ, вСсу, точности ΠΈ Π΄Ρ€.ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ‹Π±ΠΎΡ€Π° являСтся ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ функциями Π²Ρ‹Π±ΠΎΡ€Π°, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ эвристики ΠΈ Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»Π°, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ Π² Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠΉ ситуации. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ допускаСт ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΈ Π²Ρ‹Π±ΠΎΡ€ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ² ΠΏΠΎ нСскольким аспСктам ΠΈΠ»ΠΈ критСриям. Для этого ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π±ΠΎΡ€Π° ΠΏΠΎ совокупности частных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

    Анализ гСомСтричСской Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ сборкС слоТных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡Π° принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ

    Get PDF
    Computer aided assembly planning (CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. A configuration of the technical system imposes fundamental restrictions on the design solutions of the assembly process. The CAAP studies offer various methods for modelling geometric constraints. The most accurate results are obtained from the studies of geometric obstacles, which prohibit the part movement to the appropriate position in the product, by the collision analysis methods. An assembly of complex technical systems by this approach requires very high computational costs, since the analysis should be performed for each part and in several directions.The article describes a method for minimizing the number of direct checks for geometric obstacle avoidance. Introduces a concept of the geometric situation to formalize such fragments of a structure, which require checking for geometric obstacle avoidance. Formulates two statements about geometric heredity during the assembly. Poses the task of minimizing the number of direct checks as a non-antagonistic two-person game on two-colour painting of an ordered set. Presents the main decision criteria under uncertainty. To determine the best criterion, a computational experiment was carried out on painting the ordered sets with radically different structural properties. All the connected ordered sets are divided into 13 subclasses, each of which includes structurally similar instances. To implement the experiment, a special program has been developed that creates a random ordered set in the selected subclass, implements a game session on its coloration, and also collects and processes statistical data on a group of the homogeneous experiments.The computational experiment has shown that in all subclasses of the partial orders, the Hurwitz criterion with a confidence coefficient of 2/3 and that of Bayes-Laplace demonstrate the best results. The Wald and Savage criteria have demonstrated the worst results. In the experiment, a difference between the best and worst results reached 70%. With increasing height (maximum number of levels) of an ordered set, this difference tends to grow rapidly. In the subclass of pseudo-chains, all criteria showed approximately equal results.The game model of geometric obstacles avoidance allows formalizing data on geometric heredity and obtaining data on the composition and the minimum number of configurations, the test of which objectifies all existing-in-the-product geometric constraints on the movements of parts during assembly.Автоматизация проСктирования процСссов сборки слоТных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ – это ваТная ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° соврСмСнной ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ограничСния Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ сборочного ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Π° Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅Ρ‚ гСомСтрия тСхничСской систСмы. Π’ исслСдованиях ΠΏΠΎ CAAP ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ модСлирования гСомСтричСских связСй. Π‘Π°ΠΌΡ‹Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π°Π΅Ρ‚ исслСдования гСомСтричСских прСпятствии, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π·Π°ΠΏΡ€Π΅Ρ‰Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ Π² слуТСбноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΈΠ·Π΄Π΅Π»ΠΈΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π°Π½Π°Π»ΠΈΠ·Π° столкновСний. Для сборки слоТных тСхничСских систСм Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ высоких Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π°Π½Π°Π»ΠΈΠ· слСдуСт Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄Π΅Ρ‚Π°Π»ΠΈ ΠΈ Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… направлСниях.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описан ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ числа прямых ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΊ Π½Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ. Π’Π²Π΅Π΄Π΅Π½ΠΎ понятиС гСомСтричСской ситуации, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΠ΅Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ конструкции, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… трСбуСтся ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° утвСрТдСния ΠΎ гСомСтричСской наслСдствСнности ΠΏΡ€ΠΈ сборкС. Π—Π°Π΄Π°Ρ‡Π° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ числа прямых ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΊ поставлСна ΠΊΠ°ΠΊ нСантагонистичСнская ΠΈΠ³Ρ€Π° Π΄Π²ΡƒΡ… Π»ΠΈΡ† ΠΏΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ упорядочСнного мноТСства Π² Π΄Π²Π° Ρ†Π²Π΅Ρ‚Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ основныС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π² условиях нСопрСдСлСнности. Для опрСдСлСния Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ критСрия ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ экспСримСнт ΠΏΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ упорядочСнных мноТСств с Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ структурными свойствами. ВсС связныС упорядочСнныС мноТСства Ρ€Π°Π·Π±ΠΈΡ‚Ρ‹ Π½Π° 13 подклассов, Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… входят структурно ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ экзСмпляры. Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ экспСримСнта создана ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, которая создаСт случайноС упорядочСнноС мноТСство Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΌ подклассС, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΉ сСанс ΠΏΠΎ Π΅Π³ΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ собираСт ΠΈ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ статистичСскиС Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… экспСримСнтов.Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ экспСримСнт ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π²ΠΎ всСх подклассах частичных порядков Π»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρƒ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² Π“ΡƒΡ€Π²ΠΈΡ†Π° с коэффициСнтом довСрия 2/3 ΠΈ БайСса-Лапласа. Π₯ΡƒΠ΄ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ продСмонстрировали ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ Π’Π°Π»ΡŒΠ΄Π° ΠΈ Π‘Π΅Π²ΠΈΠ΄ΠΆΠ°. Π Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡƒΡ‡ΡˆΠΈΠΌΠΈ ΠΈ Ρ…ΡƒΠ΄ΡˆΠΈΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ достигала Π² экспСримСнтС 70%. Π­Ρ‚Π° Ρ€Π°Π·Π½ΠΈΡ†Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΡŽ ΠΊ быстрому росту с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ высоты (максимального числа ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ) упорядочСнного мноТСства. Π’ подклассС псСвдоцСпСй всС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Π˜Π³Ρ€ΠΎΠ²Π°Ρ модСль гСомСтричСской Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΠΈ позволяСт Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ гСомСтричСской наслСдствСнности ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ составС ΠΈ минимальном числС ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ всС гСомСтричСскиС ограничСния Π½Π° двиТСния Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΏΡ€ΠΈ сборкС, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² ΠΈΠ·Π΄Π΅Π»ΠΈΠΈ

    A methodology for aggregate assembly modelling and planning

    Get PDF
    The introduction of Concurrent Engineering highlights the need for a link between the early stages of product design and assembly planning. This thesis presents aggregate assembly process planning as a novel methodology to provide this link. The theory behind the research is to bring all aspects of product development together to consider assembly planning at the conceptual stage of design. Decisions taken during the early design stage not only have the greatest influence on production times and costs, but also should ensure that a design is easy to manufacture and assemble. An automated computer-based system has been developed to implement the methodology. The system generates aggregate assembly process plans which give details of feasible sequences, assembly process times and costs, resource requirements, and factory loadings. The Aggregate Assembly Modelling and Planning (AAMP) system employs object-oriented modelling techniques to represent designs, process planning knowledge, and assembly resources. The minimum information requirements have been identified, and a product model encompassing this data has been developed. An innovative factor of this thesis is to employ Assembly Feature Connections (AFCs) within the product model to represent assembly connectivity. Detailed generic assembly process models, functioning with limited design data, are used to calculate assembly criteria. The introduction of a detailed resource model to represent assembly facilities enables the system to calculate accurate assembly times, dependent on which resources are used within a factory, or even which factory is employed. A new algorithm uses the structure of the product model, process constraints and assembly rules to efficiently generate accurate assembly sequences. Another new algorithm loads the assembly operations onto workstations, ensuring that the capability and capacity are available. The aggregate assembly process planning functionality has been tested using products from industry, and has yielded accurate results that prove to be both technically feasible and realistic. Industrial response has been extremely favourable. Specific comments on the usefulness and simplicity of such a comprehensive system gives encouragement to the concept that aggregate assembly process planning provides the required link between the early stages of product design and assembly planning
    • …
    corecore