762 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.AgĂȘncia financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a CiĂȘncia e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    LoRaWAN communication implementation platforms

    Get PDF
    A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings

    Survey on Security Issues and Protective Measures in Different Layers of Internet of Things (IoT)

    Get PDF
    In general perspective, Internet of things is defined as a network of physical objects by connecting” things to things” through the sensors, actuators and processors, to communicate and exchange data and information among each other along with other related devices and systems spread over different locations, without human-to-human or human-to-computer interactions. This survey summarises all the security threats along with privacy issues that may be confronted by the end users in Internet of Things (IoT). The majority of survey is to gather information about the current security requirements for IoT, the further scope and the challenges in IoT and the measures to prevent attacks upon the IoT systems

    A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol

    Get PDF
    none5noIn recent years, Internet of Things technologies gained momentum in various application areas, including the Smart Home field. In this view, the smart objects available in the house can communicate with each other and with the outside world by adopting solutions already proposed for Internet of Things. In fact, among the challenges to face during the design and implementation of an Internet of Things–based Smart Home infrastructure, battery usage represents a key point for the realization of an efficient solution. In this context, the communication technology chosen plays a fundamental role, since transmission is generally the most energy demanding task, and Internet of Things communication technologies are designed to reduce as much as possible the power consumption. This article describes an Internet of Things-oriented architecture for the Smart Home, based on the long-range and low-power technology LoRa. Moreover, in order to enable the devices to communicate with each other and the outside world, the Message Queue Telemetry Transfer protocol is used as a domotic middleware. We show that LoRa, designed by having in mind the typical requirements of Internet of Things (i.e. low power consumption, sporadic transmission, and robustness to interference), is well-suited to also meet the need of more established home automation systems, specifically the low latency in message delivery. Interoperability among different devices may also be obtained through the Message Queue Telemetry Transfer midlleware.openEnnio Gambi, Laura Montanini, Danny Pigini, Gianluca Ciattaglia, Susanna SpinsanteGambi, Ennio; Montanini, Laura; Pigini, Danny; Ciattaglia, Gianluca; Spinsante, Susann

    Hardware for recognition of human activities: a review of smart home and AAL related technologies

    Get PDF
    Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    A Test Environment for Wireless Hacking in Domestic IoT Scenarios

    Get PDF
    Security is gaining importance in the daily life of every citizen. The advent of Internet of Things devices in our lives is changing our conception of being connected through a single device to a multiple connection in which the centre of connection is becoming the devices themselves. This conveys the attack vector for a potential attacker is exponentially increased. This paper presents how the concatenation of several attacks on communication protocols (WiFi, Bluetooth LE, GPS, 433 Mhz and NFC) can lead to undesired situations in a domestic environment. A comprehensive analysis of the protocols with the identification of their weaknesses is provided. Some relevant aspects of the whole attacking procedure have been presented to provide some relevant tips and countermeasures.This work has been partially supported by the Spanish Ministry of Science and Innovation through the SecureEDGE project (PID2019-110565RB-I00), and by the by the Andalusian FEDER 2014-2020 Program through the SAVE project (PY18-3724). // Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. // Funding for open access charge: Universidad de MĂĄlaga / CBU
    • 

    corecore