20 research outputs found

    Silicon Echoes: Non-Invasive Trojan and Tamper Detection using Frequency-Selective Impedance Analysis

    Get PDF
    The threat of chip-level tampering and its detection has been widely researched. Hardware Trojan insertions are prominent examples of such tamper events. Altering the placement and routing of a design or removing a part of a circuit for side-channel leakage/fault sensitivity amplification are other instances of such attacks. While semi- and fully-invasive physical verification methods can confidently detect such stealthy tamper events, they are costly, time-consuming, and destructive. On the other hand, virtually all proposed non-invasive side-channel methods suffer from noise and, therefore, have low confidence. Moreover, they require activating the tampered part of the circuit (e.g., the Trojan trigger) to compare and detect the modifications. In this work, we introduce a non-invasive post-silicon tamper detection technique applicable to different classes of tamper events at the chip level without requiring the activation of the malicious circuit. Our method relies on the fact that physical modifications (regardless of their physical, activation, or action characteristics) alter the impedance of the chip. Hence, characterizing the impedance can lead to the detection of the tamper events. To sense the changes in the impedance, we deploy known RF tools, namely, scattering parameters, in which we inject sine wave signals with high frequencies to the power distribution network (PDN) of the system and measure the “echo” of the signal. The reflected signals in various frequency bands reveal different tamper events based on their impact size on the die. To validate our claims, we performed measurements on several proof-of-concept tampered hardware implementations realized on FPGAs manufactured with a 28 nm technology. We further show that deploying the Dynamic Time Warping (DTW) distance can distinguish between tamper events and noise resulting from manufacturing process variation of different chips/boards. Based on the acquired results, we demonstrate that stealthy hardware Trojans, as well as sophisticated modifications of P&R, can be detected

    Red Team vs. Blue Team: A Real-World Hardware Trojan Detection Case Study Across Four Modern CMOS Technology Generations

    Get PDF
    Verifying the absence of maliciously inserted Trojans in ICs is a crucial task – especially for security-enabled products. Depending on the concrete threat model, different techniques can be applied for this purpose. Assuming that the original IC layout is benign and free of backdoors, the primary security threats are usually identified as the outsourced manufacturing and transportation. To ensure the absence of Trojans in commissioned chips, one straightforward solution is to compare the received semiconductor devices to the design files that were initially submitted to the foundry. Clearly, conducting such a comparison requires advanced laboratory equipment and qualified experts. Nevertheless, the fundamental techniques to detect Trojans which require evident changes to the silicon layout are nowadays well-understood. Despite this, there is a glaring lack of public case studies describing the process in its entirety while making the underlying datasets publicly available. In this work, we aim to improve upon this state of the art by presenting a public and open hardware Trojan detection case study based on four different digital ICs using a Red Team vs. Blue Team approach. Hereby, the Red Team creates small changes acting as surrogates for inserted Trojans in the layouts of 90 nm, 65 nm, 40 nm, and 28 nm ICs. The quest of the Blue Team is to detect all differences between digital layout and manufactured device by means of a GDSII–vs–SEM-image comparison. Can the Blue Team perform this task efficiently? Our results spark optimism for the Trojan seekers and answer common questions about the efficiency of such techniques for relevant IC sizes. Further, they allow to draw conclusions about the impact of technology scaling on the detection performance
    corecore