19 research outputs found

    Local non-planarity of three dimensional surfaces for an invertible reconstruction: k-cuspal cells

    No full text
    International audienceThis paper addresses the problem of the maximal recognition of hyperplanes for an invertible reconstruction of 3D discrete objects. k- cuspal cells are introduced as a three dimensional extension of discrete cusps defined by R.Breton. With k-cuspal cells local non planarity on discrete surfaces can be identified in a very straightforward way

    Spatial and temporal integration of binocular disparity in the primate brain

    Get PDF
    Le système visuel du primate s'appuie sur les légères différences entre les deux projections rétiniennes pour percevoir la profondeur. Cependant, on ne sait pas exactement comment ces disparités binoculaires sont traitées et intégrées par le système nerveux. D'un côté, des enregistrements unitaires chez le macaque permettent d'avoir accès au codage neuronal de la disparité à un niveau local. De l'autre côté, la neuroimagerie fonctionnelle (IRMf) chez l'humain met en lumière les réseaux corticaux impliqués dans le traitement de la disparité à un niveau macroscopique mais chez une espèce différente. Dans le cadre de cette thèse, nous proposons d'utiliser la technique de l'IRMf chez le macaque pour permettre de faire le lien entre les enregistrements unitaires chez le macaque et les enregistrements IRMf chez l'humain. Cela, afin de pouvoir faire des comparaisons directes entre les deux espèces. Plus spécifiquement, nous nous sommes intéressés au traitement spatial et temporal des disparités binoculaires au niveau cortical mais aussi au niveau perceptif. En étudiant l'activité corticale en réponse au mouvement tridimensionnel (3D), nous avons pu montrer pour la première fois 1) qu'il existe un réseau dédié chez le macaque qui contient des aires allant au-delà du cluster MT et des aires environnantes et 2) qu'il y a des homologies avec le réseau trouvé chez l'humain en réponse à des stimuli similaires. Dans une deuxième étude, nous avons tenté d'établir un lien entre les biais perceptifs qui reflètent les régularités statistiques 3D ans l'environnement visuel et l'activité corticale. Nous nous sommes demandés si de tels biais existent et peuvent être reliés à des réponses spécifiques au niveau macroscopique. Nous avons trouvé de plus fortes activations pour le stimulus reflétant les statistiques naturelles chez un sujet, démontrant ainsi une possible influence des régularités spatiales sur l'activité corticale. Des analyses supplémentaires sont cependant nécessaires pour conclure de façon définitive. Néanmoins, nous avons pu confirmer de façon robuste l'existence d'un vaste réseau cortical répondant aux disparités corrélées chez le macaque. Pour finir, nous avons pu mesurer pour la première fois les points rétiniens correspondants au niveau du méridien vertical chez un sujet macaque qui réalisait une tâche comportementale (procédure à choix forcé). Nous avons pu comparer les résultats obtenus avec des données également collectées chez des participants humains avec le même protocole. Dans les différentes sections de discussion, nous montrons comment nos différents résultats ouvrent la voie à de nouvelles perspectives.The primate visual system strongly relies on the small differences between the two retinal projections to perceive depth. However, it is not fully understood how those binocular disparities are computed and integrated by the nervous system. On the one hand, single-unit recordings in macaque give access to neuronal encoding of disparity at a very local level. On the other hand, functional neuroimaging (fMRI) studies in human shed light on the cortical networks involved in disparity processing at a macroscopic level but with a different species. In this thesis, we propose to use an fMRI approach in macaque to bridge the gap between single-unit and fMRI recordings conducted in the non-human and human primate brain, respectively, by allowing direct comparisons between the two species. More specifically, we focused on the temporal and spatial processing of binocular disparities at the cortical but also at the perceptual level. Investigating cortical activity in response to motion-in-depth, we could show for the first time that 1) there is a dedicated network in macaque that comprises areas beyond the MT cluster and its surroundings and that 2) there are homologies with the human network involved in processing very similar stimuli. In a second study, we tried to establish a link between perceptual biases that reflect statistical regularities in the three-dimensional visual environment and cortical activity, by investigating whether such biases exist and can be related to specific responses at a macroscopic level. We found stronger activity for the stimulus reflecting natural statistics in one subject, demonstrating a potential influence of spatial regularities on the cortical activity. Further work is needed to firmly conclude about such a link. Nonetheless, we robustly confirmed the existence of a vast cortical network responding to correlated disparities in the macaque brain. Finally, we could measure for the first time retinal corresponding points on the vertical meridian of a macaque subject performing a behavioural task (forced-choice procedure) and compare it to the data we also collected in several human observers with the very same protocol. In the discussion sections, we showed how these findings open the door to varied perspectives

    Diffusion of single molecules in nanoporous mesostructured materials

    Get PDF
    Single-molecule methods play a growing role in materials science because they can reveal structural and dynamic features which are obscured by ensemble averaging in conventional spectroscopic techniques. In this work, such methods were used to study the dynamics of single dye molecules (guests) within different surrounding porous matrices (hosts) using wide-field microscopy and single-molecule tracking. A significant amount of tracking data was collected and sophisticated methods to analyse the data according to diffusion theory were developed. A method was established to directly correlate the diffusion information that is provided by single-molecule trajectories with the images of the porous host systems obtained by transmission electron microscopy (TEM). Furthermore, the results from single-molecule tracking experiments were compared with diffusion measurements using pulsed-field gradient NMR in the same samples. The data presented in this thesis thus provide for the first time a detailed picture of the real mesoporous structure and its effects on the dynamic behavior of dye molecules at the nanometre to micron scale, e.g.~information about pore connectivity and accessibility. The methodology established here is expected to provide detailed insights into the dynamics of other important host-guest systems, such as bioactive molecules in porous materials for drug delivery or reactants in porous catalysts

    Etude du transport de molécules bioactives dans l'épiderme de fruits à pépins(Rosacea Juss) : mise au point et développement d'un procédé d'extraction de produits phytosanitaires

    Get PDF
    L’agriculture moderne utilise depuis plus de cinquante ans de nombreux produits phytosanitaires de traitement dans le but d’assurer les meilleurs rendements et de limiter les pathogènes néfastes pour la santé humaine ou animale. Jusqu’à peu, la quantité de résidus phytosanitaires présents dans les denrées alimentaires (fruits, légumes, céréales, plantes fourragères, produits transformés…) était certes contrôlée mais en règle générale, ne soulevait que très peu d’interrogation en terme de conséquences à plus ou moins long terme. A l’heure actuelle, des exigences de plus en plus drastiques apparaissent et se généralisent. Les produits issus des industries agricole et agroalimentaire doivent répondre à des normes de plus en plus strictes en terme de résidus pour rester compétitives. En particulier, dans le cas des pommes, dont le nombre de traitements par saison est l’un des plus élevé en France, les exigences tendent vers le zéro résidu détectable. La stratégie de cette étude repose, dans un premier temps, sur la compréhension des phénomènes de transfert à la surface du fruit. Une caractérisation physico-chimique de l’épiderme de différentes variétés de pommes a conduit à l’identification des structures impliquées dans l’interaction molécule bioactivematrice biopolymérique. Le fludioxonil a été choisi comme molécule modèle en raison de sa fréquence d’utilisation comme fongicide de conservation et de sa composition atomique (présence de fluors). Les épidermes de pommes Fuji ont servi de matrice modèle. Dans un second temps, un procédé de traitement par voie chimique des pommes a été mis au point et développé pour extraire les résidus de 12 molécules de phytosanitaires parmi les plus couramment utilisées dans les vergers de pommiers du Midi-Pyrénées. Trois variétés de pommes populaires en France ont été sélectionnées pour leurs différentes périodes de récolte correspondant à des risques de contamination variables. Les résultats ont conduit à la proposition d’un schéma de désorption des molécules bioactives dans la matrice biopolymérique, basé sur les théories de la solubilité de Hildebrandt et de Hansen. En complément, le développement d’une méthode analytique de quantification par chromatographie en phase gazeuse couplée à la spectrométrie de masse trappe d’ions (GC/MS2) des molécules phytosanitaires dans la matrice épidermique des pommes a mis en évidence que : 1- l’augmentation de la concentration des analytes d’intérêt au-dessus des limites de détection de la technique analytique appliquée favorisait la quantification des très faibles traces, voire des ultratraces ; 2- les analytes d’intérêt subissaient en parallèle des effets matrice négatifs. Une forte interaction entre certains analytes de la matrice et les phytosanitaires a été démontrée et une méthode de purification basée sur un couplage chromatographie sur couche mince haute performance avec la GC/MS2 (CCMHP/GC/MS2) a été proposée afin de minimiser les effets matrice négatifs dan

    Interactions et propriétés physico-chimiques de surfaces modèles de biomatériaux

    Full text link
    La surface d’un implant ou d’un système à libération contrôlée de médicament est la première zone en contact avec les systèmes physiologiques. Les propriétés de surface vont alors définir le devenir à court et long termes de ces biomatériaux dans l’organisme. Pour améliorer la biointégration mais aussi l’efficacité des matériaux en contact avec les fluides et tissus biologiques, un fin contrôle des phénomènes se produisant à l’interface biologique est nécessaire. Cette thèse s’intéresse à l’étude de trois types de surfaces pouvant modéliser celles de biomatériaux couramment employés. Dans un premier temps, la stabilité hydrolytique de surface amino-fonctionnalisée a été investiguée. L’amino-fonctionnalisation de surface via l’emploi de monocouche auto-assemblée rencontre un intérêt certain pour l’ancrage de diverses molécules, macromolécules, systèmes colloïdaux et cellules. Cependant, le manque de stabilité en milieu aqueux limite grandement leurs perspectives d’utilisation pour la fonctionnalisation de surface de biomatériaux. Dans ce manuscrit, une monocouche amino-fonctionnalisée à base d’aminoalkylsilane a été greffée sur des substrats de silicate (silice et mica). L’extrême stabilité hydrolytique rapportée pour cette monocouche permet une immersion prolongée en milieu aqueux et sur une large gamme de pH. Les paramètres ayant été identifiés comme impactant cette stabilité sont l’organisation de la monocouche, la densité de greffage et la longueur de la chaîne carbonée de l’aminoalkylsilane. Dans un second temps, les propriétés lubrifiantes en milieu aqueux de surfaces structurées sont rapportées. Le besoin en surface autolubrifiante couvre une large variété de biomatériaux tels que les substituts cartilagineux, les dispositifs oculaires ou bien les cathéters. Des structures dômes ont été produites sur des surfaces via l’immobilisation de particules. Des particules polymériques à base de polyélectrolytes sensibles aux variations de pH ont permis l’obtention de structures molles et déformables alors que l’immobilisation de particules de silice a permis la formation de structures dures. Deux mécanismes majeurs contrôlant les propriétés de frottement ont été mis en évidence. Les surfaces structurées à partir de polyélectrolytes présentent des propriétés de frottement directement corrélées au gonflement et donc à la teneur en eau de ces structures. Ce ii gonflement peut être contrôlé par le pH du milieu aqueux. Plus les structures sont gonflées, plus le coefficient de frottement est faible. En revanche, avec des structures dures obtenues par l’immobilisation de particules de silice, le roulement de ces particules permet d’obtenir sous certaines conditions des coefficients de frottement extrêmement faibles. Dans ce cas, la nature du lien entre la particule et le substrat importe peu et un dégreffage systématique de certaines particules est observé pour permettre le mouvement des surfaces tout en limitant les forces de frottement. Dans un troisième temps, la complexation de simples brins de siARN via différentes natures d’interactions a été étudiée à l’aide de surfaces modèles de chimie variable. Cette étude a permis de démontrer la possibilité d'adsorber des simples brins de siARN via des interactions non-électrostatiques sur des surfaces planes. Des interactions hydrophobes et les liaisons hydrogène ont par la suite pu être employées pour complexer cet acide nucléique avec des formulations micellaires et liposomales non-cationiques. Cette étude permet d'envisager la conception de nanovecteurs non-cationiques et donc moins toxiques pour la délivrance de simples brins de siARN. Les travaux présentés dans ce manuscrit contribuent à l’élargissement des connaissances en matière de propriétés physico-chimiques de surface aux interfaces biologiques.The surface of an implant or a drug delivery system is the first area of contact with biological environment. The surface properties of these biomaterials will define the short and long term behavior in the organism. To improve biointegration and efficiency, a fine control of the biological interface is required. This thesis investigates three different kind of surfaces modelling commonly used biomaterials. First, the hydrolytic stability of amino-functionalized surfaces was investigated. The amino-functionalization using self-assembled monolayers is required for the anchorage of molecules, macromolecules, colloidal systems and cells onto biomaterials. However, the lack of stability in aqueous media limits their use. In this manuscript, an amino-functionalized self-assembled monolayer made of aminoalkylsilane was grafted onto silicate substrates (silica and mica). The extreme robustness that we reported for this monolayer allows immersion into aqueous media for a wide range of pH and over long periods of time. The most important parameters that were identified that significantly impact the hydrolytic stability are the order of the monolayers, the grafting density and the length of the alkyl chain of the aminoalkylsilane. Second, the lubricant properties in aqueous media of structured surfaces are reported. The need in self-lubricant surfaces is required in a wide variety of biomaterials such as the cartilage substitute, ocular medical device or catheters. Domed structures were produced on surfaces through immobilization of particles. Polymeric nanoparticles composed of pH-sensitive polyelectrolytes were used to prepared soft and deformable structures while the immobilization of silica particles allows hard structures to be created. Two main mechanisms controlling friction properties were identified. Friction properties of structured surfaces made of polyelectrolytes were controlled by the swelling and the water content of the particles. This swelling can be tuned by changing the pH of the aqueous media. An increase in particle swelling leads to a decrease in the friction coefficient. However, with the hard structures, the rolling of the particles in some cases can also lead to extremely low friction coefficient. In that case, the nature of the attachment of iv the particle to the surface does not matter and systematic degrafting of some particles was observed which allows surfaces to slide with small friction forces. Third, the complexation of a single-stranded siRNA through different interactions was investigated with model surfaces of various chemistry. The results show that ss-siRNA can adsorb onto hydrophilic (positively and negatively charged) as well as on hydrophobic substrates suggesting that the complexation can occur through hydrophobic interactions and hydrogen bonding in addition to electrostatic interactions. This study suggests that non-electrostatic interactions could be exploited to complement electrostatic interactions in the design of less toxic nanocarriers and that non-cationics nanovectors can be employed as a potential single-stranded siRNA delivery systems. The results presented in this thesis contribute to increase the knowledge in the field of physico-chemistry surface properties of biological interfaces

    Inertial Navigation and Mapping for Autonomous Vehicles

    Full text link

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS

    Multiscale modelling of delayed hydride cracking

    Get PDF
    A mechanistic model of delayed hydride cracking (DHC) is crucial to the nuclear industry as a predictive tool for understanding the structural failure of zirconium alloy components that are used to clad fuel pins in water-cooled reactors. Such a model of DHC failure must be both physically accurate and computationally efficient so that it can inform and guide nuclear safety assessments. However, this endeavour has so far proved to be an unsurmountable challenge because of the seemingly intractable multiscale complexity of the DHC phenomenon, which is a manifestation of hydrogen embrittlement that involves the interplay and repetition of three constituent processes: atomic scale diffusion, microscale precipitation and continuum scale fracture. This investigation aims to blueprint a novel multiscale modelling strategy to simulate the early stages of DHC initiation: stress-driven hydrogen diffusion-controlled precipitation of hydrides near loaded flaws in polycrystalline zirconium. Following a careful review of the experimental observations in the literature as well as the standard modelling techniques that are commonplace in nuclear fuel performance codes in the first part of this dissertation, the second and third parts introduce a hybrid multiscale modelling strategy that integrates concepts across a spectrum of length and time scales into one self-consistent framework whilst accounting for the complicated nuances of the zirconium-hydrogen system. In particular, this strategy dissects the DHC mechanism into three interconnected modules: (i) stress analysis, which performs defect micromechanics in hexagonal close-packed zirconium through the application of the mathematical theory of planar elasticity to anisotropic continua; (ii) stress-diffusion analysis, which bridges the classical long-range elastochemical transport with the quantum structure of the hydrogen interstitialcy in the trigonal environment of the tetrahedral site; and (iii) diffusion-precipitation analysis, which translates empirical findings into an optimised algorithm that emulates the thermodynamically favourable spatial assembly of the microscopic hydride needles into macroscopic hydride colonies at prospective nucleation sites. Each module explores several unique mechanistic modelling considerations, including a multipolar expansion of the forces exerted by hydrogen interstitials, a distributed dislocation representation of the hydride platelets, and a stoichiometric hydrogen mass conservation criterion that dictates the lifecycle of hydrides. The investigation proceeds to amalgamate the stress, stress-diffusion and diffusion-precipitation analyses into a unified theory of the mesoscale mechanics that underpin the early stages of DHC failure and a comprehensive simulation of the flaw-tip hydrogen profiles and hydride microstructures. The multiscale theory and simulation are realised within a bespoke software which incorporates computer vision to generate mesoscale micrographs that depict the geometries, morphologies and contours of key metallographic entities: cracks and notches, grains, intergranular and intragranular nucleation sites as well as regions of hydrogen enhancement and complex networks of hydride features. Computer vision mediates the balance between simulation accuracy and simulation efficiency, which is completely novel in the context of DHC research as a paradigm at the intersection of computational science and computer science. Preliminary tests show that the simulation environment of the hybrid model is significantly more accurate and efficient in comparison with the traditional finite element and phase field methodologies. Due to this unprecedented simulation accuracy-efficiency balance, realistic flaw-tip hydrogen profiles and hydride microstructures can be simulated within seconds, which naturally facilitates statistical averaging over ensembles. Such statistical capabilities are highly relevant to nuclear safety assessments and, therefore, a systematic breakdown of the model formulation is presented in the style of a code specification manual so that the bespoke software can be readily adapted within an industrial setting. As the main contribution to DHC research, the proposed multiscale model comprises a state-of-the-art microstructural solver whose unrivalled versatility is demonstrated by showcasing a series of simulated micrographs that are parametrised by flaw acuity, grain size, texture, alloy composition, and histories of thermomechanical cycles. Direct comparisons with experimental micrographs indicate good quantitative agreement and provide some justification to the known qualitative trends. Furthermore, the overall hybrid methodology is proven to scale linearly with the number of hydrides, which is computationally advantageous in its own right because it allows the bespoke software to be extended without compromising its speed. Several possible extensions are outlined which would improve the phenomological accuracy of the multiscale model whilst retaining its efficiency. In its current form, however, this hybrid multiscale model of the early stages of DHC goes far beyond existing methodologies in terms of simulation scope.Open Acces
    corecore