54 research outputs found

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Improved Encrypted-Signals-Based Reversible Data Hiding Using Code Division Multiplexing and Value Expansion

    Get PDF
    Compared to the encrypted-image-based reversible data hiding (EIRDH) method, the encrypted-signals-based reversible data hiding (ESRDH) technique is a novel way to achieve a greater embedding rate and better quality of the decrypted signals. Motivated by ESRDH using signal energy transfer, we propose an improved ESRDH method using code division multiplexing and value expansion. At the beginning, each pixel of the original image is divided into several parts containing a little signal and multiple equal signals. Next, all signals are encrypted by Paillier encryption. And then a large number of secret bits are embedded into the encrypted signals using code division multiplexing and value expansion. Since the sum of elements in any spreading sequence is equal to 0, lossless quality of directly decrypted signals can be achieved using code division multiplexing on the encrypted equal signals. Although the visual quality is reduced, high-capacity data hiding can be accomplished by conducting value expansion on the encrypted little signal. The experimental results show that our method is better than other methods in terms of the embedding rate and average PSNR

    Privacy-aware reversible watermarking in cloud computing environments

    Get PDF
    As an interdisciplinary research between watermarking and cryptography, privacy-aware reversible watermarking permits a party to entrust the task of embedding watermarks to a cloud service provider without compromising information privacy. The early development of schemes were primarily based upon traditional symmetric-key cryptosystems, which involve an extra implementation cost of key exchange. Although recent research attentions were drawn to schemes compatible with asymmetric-key cryptosystems, there were notable limitations in the practical aspects. In particular, the host signal must either be enciphered in a redundant way or be pre-processed prior to encryption, which would largely limit the storage efficiency and scheme universality. To relax the restrictions, we propose a novel research paradigm and devise different schemes compatible with different homomorphic cryptosystems. In the proposed schemes, the encoding function is recognised as an operation of adding noise, whereas the decoding function is perceived as a corresponding denoising process. Both online and offline contentadaptive predictors are developed to assist watermark decoding for various operational requirements. A three-way trade-off between the capacity, fidelity and reversibility is analysed mathematically and empirically. It is shown that the proposed schemes achieve the state-the-art performance

    IMPLEMENTATION OF DUAL DATA HIDING SCHEME WITH STEGANOGRAPHY

    Get PDF
    The Lossless data hiding provides the embedding of data in a host image without any loss of data. This research explain a lossless data hiding and image cryptography method based on Choas Block to image encryption the lossless means if the marked image is considered reliable, the embedding distortion can be totally removed from marked image afterward the embedded data has been extract. This procedure uses features of the pixel difference to embed more data than other randomly partition using Block based Sharpness Index Filtering and refine with single level wavelet decomposition shifting technique to prevent image distortion problems. In this work also manages reversible data hiding based on chaotic technique. In which initially image histogram processes to perceive the pixels which is chosen for hiding each bit of secret data, then by the logistic chaotic map compute an order of hiding each bit stream. Performances differentiate with other exist lossless data hiding plan providing show the superiority of the research. In this proposed research PSNR is found nearly 5.5*103 and existing 4.8*103 at 100 embedding rate which enhance for our existing technique that simulated in MATLAB 2017a

    Efficient QR code authentication mechanism based on Sudoku

    Get PDF
    Abstract(#br)QR code is an important means for delivering information which has been widely used in our daily life. As an ISO international standard, the QR code encoding and decoding process are disclosed publicly, thus it is easy to decode a QR code then forge a new QR code with the same QR code public message. It can lead to the problems of information forgery and ease the spreading of fake news. To overcome this weakness, we propose a simple and efficient QR code authentication mechanism to embed the authentication information in the padding region of QR code based on the characteristics of Sudoku and Reed-Solomon code. Different from the previous scheme, the proposed scheme embeds the authentication information without consuming the QR code error correction capacity and is able to..
    • …
    corecore