44 research outputs found

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit

    Get PDF
    Quantum-dot cellular automata (QCA) are a promising nanoscale computing technology that exploits the quantum mechanical tunneling of electrons between quantum dots in a cell andelectrostatic interaction between dots in neighboring cells. QCA can achieve higher speed, lowerpower, and smaller areas than conventional, complementary metal-oxide semiconductor (CMOS) technology. Developing QCA circuits in a logically and physically reversible manner can provide exceptional reductions in energy dissipation. The main challenge is to maintain reversibility down to the physical level. A crucial component of a computer’s central processing unit (CPU) is the arithmetic logic unit (ALU), which executes multiple logical and arithmetic functions on the data processed by the CPU. Current QCA ALU designs are either irreversible or logically reversible; however, they lack physical reversibility, a crucial requirement to increase energy efficiency. This paper shows a new multilayer design for a QCA ALU that can carry out 16 different operations and is both logically and physically reversible. The design is based on reversible majority gates, which are the key building blocks. We use QCA Designer-E software to simulate and evaluate energy dissipation. The proposed logically and physically reversible QCA ALU offers an improvement of 88.8% in energy efficiency. Compared to the next most efficient 16-operation QCA ALU, this ALU uses 51% fewer QCA cells and 47% less area

    Design and analysis of efficient QCA reversible adders

    Get PDF
    Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architecture

    Exploration of Majority Logic Based Designs for Arithmetic Circuits

    Get PDF
    Since its inception, Moore\u27s Law has been a reliable predictor of computational power. This steady increase in computational power has been due to the ability to fit increasing numbers of transistors in a single chip. A consequence of increasing the number of transistors is also increasing the power consumption. The physical properties of CMOS technologies will make this powerwall unavoidable and will result in severe restrictions to future progress and applications. A potential solution to the problem of rising power demands is to investigate alternative low power nanotechnologies for implementing logic circuits. The intrinsic properties of these emerging nanotechnologies result in them being low power in nature when compared to current CMOS technologies. This thesis specifically highlights quantum dot celluar automata (QCA) and nanomagnetic logic (NML) as just two possible technologies. Designs in NML and QCA are explored for simple arithmetic units such as full adders and subtractors. A new multilayer 5-input majority gate design is proposed for use in NML. Designs of reversible adders are proposed which are easily testable for unidirectional stuck at faults

    Designing a Novel Reversible Systolic Array Using QCA

    Get PDF
    Many efforts have been done about designing nano-based devices till today. One of these devices is Quantum Cellular Automata (QCA). Because of astonishing growth in VLSI circuits Designs in larger scales and necessity of feature size reduction, there is more need to design complicated control systems using nano-based devices. Besides, since there is a critical manner of temperature in QCA devices, complicated systems using these devices should be designed reversibly. This article has been proposed a novel architecture for QCA circuits in order to utilizing in complicated control systems based on systolic arrays with high throughput and least power dissipation

    A thermally aware performance analysis of quantum cellular automata logic gates

    Get PDF
    The high-performance digital circuits can be constructed at high operating frequency, reduced power dissipation, portability, and large density. Using conventional complementary-metal-oxide-semiconductor (CMOS) design process, it is quite difficult to achieve ultra-high-speed circuits due to scaling problems. Recently quantum dot cellular automata (QCA) are prosed to develop logic circuits at atomic level. In this paper, we analyzed the performance of QCA circuits under different temperature effects and observed that polarization of the cells is highly sensitive to temperature. In case of the 3-input majority gate the cell polarization drops to 50% with an increase in the temperature of 18 K and for 5 input majority gate the cell polarization drops more quickly than the 3-input majority. Further, the performance of majority gates also compared in terms of area and power dissipation. It has been noticed that the proposed logic gates can also be used for developing simple and complex and memory circuits

    Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits

    Get PDF
    Novel digital technologies always lead to high density and very low power consumption. One of these concepts—quantum-dot cellular automata (QCA), which is one of the new emerging nanotechnologies, is based on Coulomb repulsion. This chapter presents a novel design of 2-input Exclusive-NOR (XNOR)/Exclusive-OR (XOR) gates with 3-input Exclusive-NOR (XNOR) gates which are composed of 10 cells on 0.006 μm2 of area. A novel architecture of 3-input Exclusive-OR (XOR) gate is defined by 12 cells on 0.008 μm2 of area. The proposed design of 2-input XOR/XNOR gate structures provide less area and low complexity than the best reported design. The simulation results of proposed designs have been achieved using QCA Designer tool version 2.0.3
    corecore