120 research outputs found

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Ensemble Reversible Data Hiding

    Full text link
    The conventional reversible data hiding (RDH) algorithms often consider the host as a whole to embed a secret payload. In order to achieve satisfactory rate-distortion performance, the secret bits are embedded into the noise-like component of the host such as prediction errors. From the rate-distortion optimization view, it may be not optimal since the data embedding units use the identical parameters. This motivates us to present a segmented data embedding strategy for efficient RDH in this paper, in which the raw host could be partitioned into multiple subhosts such that each one can freely optimize and use the data embedding parameters. Moreover, it enables us to apply different RDH algorithms within different subhosts, which is defined as ensemble. Notice that, the ensemble defined here is different from that in machine learning. Accordingly, the conventional operation corresponds to a special case of the proposed work. Since it is a general strategy, we combine some state-of-the-art algorithms to construct a new system using the proposed embedding strategy to evaluate the rate-distortion performance. Experimental results have shown that, the ensemble RDH system could outperform the original versions in most cases, which has shown the superiority and applicability.Comment: Fig. 1 was updated due to a minor erro

    An Efficient Data Security System Using Reserve Room Approach on Digital Images for Secret Sharing

    Get PDF
    This paper presents enhancement of d ata protection system for secret communication through common network based on reversible data concealment in encrypted images with reserve room approach. In this paper was implemented for true color RGB image and reserve room approach under multi scale decomposition. The Blue plane will be chosen for hiding the secret text data. Then image is then separated into number of blocks locally and lifting wavelet will be used to detect approximation and detailed coefficients. Then approximation part is encrypted using chaos encryption method. The proposed encryption technique uses the key to encrypt an image and not only enhances the safety of secret carrier informa tion by making the information inaccessible to any intruder having a random method. After image encryption, the data hide r will conceal the secret data into the detailed coefficients which are reserved before encryption. Although encryption achieves certain security effects, they make the secret messages unreadable and unnatural or meaningless. This system is still enhanced with encrypt messages using a symmetric key method. This is the reason a new security approach called reversible data hiding arises. It is the art of hiding the existence of data in another transmission medium to achieve secret communication. The data hidi ng technique uses the adaptive LSB replacement algorithm for concealing the secret message bits into the encrypted image. In the data extraction module, the secret data will be extracted by using relevant key for choosing the encrypted pixe ls to extract th e data. By using the decryption keys, the image and extracted text data will be extracted from encryption to get the original informatio n. Finally the performance of this proposal in encryption and data hiding will be analyzed based on image and data recovery

    Survey on Reversible Data Hiding in Encrypted Images Using POB Histogram Method

    Get PDF
    This paper describes a survey on reversible data hiding in encrypted images. Data hiding is a process to embed useful data into cover media. Data invisibility is its major requirement. Data hiding can be done in audio, video, image, text, and picture. Here use an image for data hiding especially digital images and existing method (Histogram Block Shift Base Method) HBSBM or POB. Now a day's reversible data hiding in encrypted images is in use due to its excellent property which is original cover image can be recovered with no loss after extraction of the embedded data. Also, it protects the original data. According to the level and kind of application one or more data hiding methods is used. Data hiding can be done in audio, video, text, and image and other forms of information. Some data hiding techniques emphasize on digital image security, some on the robustness of digital image hiding process while other's main focus is on imperceptibility of a digital image. The capacity of digital information which has to hide is also the main concern in some of the applications. The objective of some of the papers mentioned below is to achieve two or more than two parameters i.e. Security, robustness, imperceptibility and capacity but some of the parameters are trade-off which means only one can be achieved on the cost of other. So the data hiding techniques aiming to achieve maximum requirements i.e. security, robustness, capacity, imperceptibility etc. and which can be utilized in the larger domain of applications is desired. Related work for techniques used for data hiding in a digital image is described in this paper

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire
    corecore