358 research outputs found

    An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images

    Get PDF
    International audienceReversible data hiding in encrypted images (RDHEI) is an effective technique to embed data in the encrypted domain. An original image is encrypted with a secret key and during or after its transmission, it is possible to embed additional information in the encrypted image, without knowing the encryp-tion key or the original content of the image. During the decoding process, the secret message can be extracted and the original image can be reconstructed. In the last few years, RDHEI has started to draw research interest. Indeed, with the development of cloud computing, data privacy has become a real issue. However, none of the existing methods allow us to hide a large amount of information in a reversible manner. In this paper, we propose a new reversible method based on MSB (most significant bit) prediction with a very high capacity. We present two approaches, these are: high capacity reversible data hiding approach with correction of prediction errors and high capacity reversible data hiding approach with embedded prediction errors. With this method, regardless of the approach used, our results are better than those obtained with current state of the art methods, both in terms of reconstructed image quality and embedding capacity

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Generalized PVO‐based dynamic block reversible data hiding for secure transmission using firefly algorithm

    Get PDF
    In this paper, we proposed a novel generalized pixel value ordering–based reversible data hiding using firefly algorithm (GPVOFA). The sequence of minimum and maximum number pixels value has been used to embed the secret data while prediction and modification are held on minimum, and the maximum number of pixel blocks is used to embed the secret data into multiple bits. The host image is divided into the size of noncoinciding dynamic blocks on the basis of firefly quadtree partition, whereas rough blocks are divided into a larger size; moreover, providing more embedding capacity used small flat blocks size and optimal location in the block to write the information. Our proposed method becomes able to embed large data into a host image with low distortion. The rich experimental results are better, as compared with related preceding arts

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    Best Fit Method of Sample Selection in Data Hiding and Extraction

    Get PDF
    Today data security and its transmission over the wireless network need special attention. Intruder always has a watch on sensitive data transmitted over a wireless network. This work proposes an approach that minimizes the quantization error between the original and result carrier by selecting optimize samples during Data Hiding. Propose work find out best matching carrier components during the data hiding process. Results also imply that achieved results are far better than any other steganographic method

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    An image steganography using improved hyper-chaotic Henon map and fractal Tromino

    Get PDF
    Steganography is a vital security approach that hides any secret content within ordinary data, such as multimedia. First, the cover image is converted into a wavelet environment using the integer wavelet transform (IWT), which protects the cover images from false mistakes. The grey wolf optimizer (GWO) is used to choose the pixel’s image that would be utilized to insert the hidden image in the cover image. GWO effectively selects pixels by calculating entropy, pixel intensity, and fitness function using the cover images. Moreover, the secret image was encrypted by utilizing a proposed hyper-chaotic improved Henon map and fractal Tromino. The suggested method increases computational security and efficiency with increased embedding capacity. Following the embedding algorithm of the secret image and the alteration of the cover image, the least significant bit (LSB) is utilized to locate the tempered region and to provide self-recovery characteristics in the digital image. According to the findings, the proposed technique provides a more secure transmission network with lower complexity in terms of peak signal-to-noise ratio (PSNR), normalized cross correlation (NCC), structural similarity index (SSIM), entropy and mean square error (MSE). As compared to the current approaches, the proposed method performed better in terms of PSNR 70.58% Db and SSIM 0.999 respectively
    corecore