226 research outputs found

    New Framework for Code-Mapping-based Reversible Data Hiding in JPEG Images

    Full text link
    Code mapping (CM) is an efficient technique of reversible data hiding (RDH) in JPEG images, which embeds data by constructing the mapping relationship between used codes and unused codes in JPEG bitstream. In this paper, we present a new framework to design the CM-based RDH method. Firstly, to suppress the file size expansion and improve the applicability, a new code mapping strategy is proposed. Based on the proposed strategy, the mapped codes are redefined by customizing a new Huffman table thoroughly rather than selected from the unused codes in the original Huffman table. Afterwards, the key issue of designing the CM-based RDH method, i.e., constructing the code mapping, is converted into solving a combinatorial optimization problem. As a realization, a novel CM-based RDH method is introduced by employing the genetic algorithm (GA). Experimental results show that the efficacy of the proposed method with high embedding capacity and no signal distortion while suppressing file size expansion

    Design and Analysis of Reversible Data Hiding Using Hybrid Cryptographic and Steganographic approaches for Multiple Images

    Get PDF
    Data concealing is the process of including some helpful information on images. The majority of sensitive applications, such sending authentication data, benefit from data hiding. Reversible data hiding (RDH), also known as invertible or lossless data hiding in the field of signal processing, has been the subject of a lot of study. A piece of data that may be recovered from an image to disclose the original image is inserted into the image during the RDH process to generate a watermarked image. Lossless data hiding is being investigated as a strong and popular way to protect copyright in many sensitive applications, such as law enforcement, medical diagnostics, and remote sensing. Visible and invisible watermarking are the two types of watermarking algorithms. The watermark must be bold and clearly apparent in order to be visible. To be utilized for invisible watermarking, the watermark must be robust and visibly transparent. Reversible data hiding (RDH) creates a marked signal by encoding a piece of data into the host signal. Once the embedded data has been recovered, the original signal may be accurately retrieved. For photos shot in poor illumination, visual quality is more important than a high PSNR number. The DH method increases the contrast of the host picture while maintaining a high PSNR value. Histogram equalization may also be done concurrently by repeating the embedding process in order to relocate the top two bins in the input image's histogram for data embedding. It's critical to assess the images after data concealment to see how much the contrast has increased. Common picture quality assessments include peak signal to noise ratio (PSNR), relative structural similarity (RSS), relative mean brightness error (RMBE), relative entropy error (REE), relative contrast error (RCE), and global contrast factor (GCF). The main objective of this paper is to investigate the various quantitative metrics for evaluating contrast enhancement. The results show that the visual quality may be preserved by including a sufficient number of message bits in the input photographs

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    A robust image watermarking technique based on quantization noise visibility thresholds

    Get PDF
    International audienceA tremendous amount of digital multimedia data is broadcasted daily over the internet. Since digital data can be very quickly and easily duplicated, intellectual property right protection techniques have become important and first appeared about fifty years ago (see [I.J. Cox, M.L. Miller, The First 50 Years of Electronic Watermarking, EURASIP J. Appl. Signal Process. 2 (2002) 126-132. [52]] for an extended review). Digital watermarking was born. Since its inception, many watermarking techniques have appeared, in all possible transformed spaces. However, an important lack in watermarking literature concerns the human visual system models. Several human visual system (HVS) model based watermarking techniques were designed in the late 1990's. Due to the weak robustness results, especially concerning geometrical distortions, the interest in such studies has reduced. In this paper, we intend to take advantage of recent advances in HVS models and watermarking techniques to revisit this issue. We will demonstrate that it is possible to resist too many attacks, including geometrical distortions, in HVS based watermarking algorithms. The perceptual model used here takes into account advanced features of the HVS identified from psychophysics experiments conducted in our laboratory. This model has been successfully applied in quality assessment and image coding schemes M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, IEEE Internat. Conf. Image Process. 3 (2003) 185-188, N. Bekkat, A. Saadane, D. Barba, Masking effects in the quality assessment of coded images, in: SPIE Human Vision and Electronic Imaging V, 3959 (2000) 211-219. In this paper the human visual system model is used to create a perceptual mask in order to optimize the watermark strength. The optimal watermark obtained satisfies both invisibility and robustness requirements. Contrary to most watermarking schemes using advanced perceptual masks, in order to best thwart the de-synchronization problem induced by geometrical distortions, we propose here a Fourier domain embedding and detection technique optimizing the amplitude of the watermark. Finally, the robustness of the scheme obtained is assessed against all attacks provided by the Stirmark benchmark. This work proposes a new digital rights management technique using an advanced human visual system model that is able to resist various kind of attacks including many geometrical distortions

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature
    corecore