687 research outputs found

    High Capacity Reversible Data Hiding for Encrypted 3D Mesh Models Based on Topology

    Full text link
    Reversible data hiding in encrypted domain(RDH-ED) can not only protect the privacy of 3D mesh models and embed additional data, but also recover original models and extract additional data losslessly. However, due to the insufficient use of model topology, the existing methods have not achieved satisfactory results in terms of embedding capacity. To further improve the capacity, a RDH-ED method is proposed based on the topology of the 3D mesh models, which divides the vertices into two parts: embedding set and prediction set. And after integer mapping, the embedding ability of the embedding set is calculated by the prediction set. It is then passed to the data hider for embedding additional data. Finally, the additional data and the original models can be extracted and recovered respectively by the receiver with the correct keys. Experiments declare that compared with the existing methods, this method can obtain the highest embedding capacity

    Efficiency of LSB steganography on medical information

    Get PDF
    The development of the medical field had led to the transformation of communication from paper information into the digital form. Medical information security had become a great concern as the medical field is moving towards the digital world and hence patient information, disease diagnosis and so on are all being stored in the digital image. Therefore, to improve the medical information security, securing of patient information and the increasing requirements for communication to be transferred between patients, client, medical practitioners, and sponsors is essential to be secured. The core aim of this research is to make available a complete knowledge about the research trends on LSB Steganography Technique, which are applied to securing medical information such as text, image, audio, video and graphics and also discuss the efficiency of the LSB technique. The survey findings show that LSB steganography technique is efficient in securing medical information from intruder

    formal modeling for magnetic resonance images tamper mitigation

    Get PDF
    Abstract The picture archiving and communication system is a medical imaging technology used primarily in healthcare organizations to store and digitally transmit electronic images and clinically-relevant reports. As demonstrated, these systems can be exploited by malicious users: in fact, considering that medical images are not digitally encrypted, any medical image modifications would be difficult to detect for a radiologist. To mitigate this aspect, in this paper a formal modelisation for picture archiving and communication system systems is proposed. The main aim is to avoid illegal writing and reading from components that should not do it, by representing the system components in terms of automa

    An Agent-Based Simulation API for Speculative PDES Runtime Environments

    Get PDF
    Agent-Based Modeling and Simulation (ABMS) is an effective paradigm to model systems exhibiting complex interactions, also with the goal of studying the emergent behavior of these systems. While ABMS has been effectively used in many disciplines, many successful models are still run only sequentially. Relying on simple and easy-to-use languages such as NetLogo limits the possibility to benefit from more effective runtime paradigms, such as speculative Parallel Discrete Event Simulation (PDES). In this paper, we discuss a semantically-rich API allowing to implement Agent-Based Models in a simple and effective way. We also describe the critical points which should be taken into account to implement this API in a speculative PDES environment, to scale up simulations on distributed massively-parallel clusters. We present an experimental assessment showing how our proposal allows to implement complicated interactions with a reduced complexity, while delivering a non-negligible performance increase
    • …
    corecore