229 research outputs found

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Very High Embedding Capacity Algorithm for Reversible Image Watermarking

    Get PDF
    Reversible image watermarking enables the embedding of copyright or useful information in a host image without any loss of information. Here a novel technique to improve the embedding capacity i.e. reversible watermarking using an adaptive prediction error expansion & pixel selection is proposed. This work is an improvement in conventional Prediction Error Expansion by adding two new techniques adaptive embedding & pixel selection. Instead of uniform embedding, here one or two bits of watermark are adaptively embed into the expandable pixels as per the regional complexity. Adaptive Prediction Error Expansion can obtain the embedded rate upto 1.3 bits per pixel as compared to the 1 BPP of conventional Prediction Error Expansion. Also an intermediate step of prediction error expansion is proposed to select relatively smooth pixels and ignore the rough ones. In other words, the rough pixels may remain unchanged, and only smooth pixels are expanded or shifted. Therefore compared with conventional Prediction Error Expansion, a more sharply distributed prediction error histogram is obtained i.e. , and a larger proportion of prediction-errors in the histogram are expanded to carry hidden data. So the amount of shifted pixels is diminished, which leads to a better image quality. With these improvements, this method performs better than conventional Prediction Error Expansion. It can embed larger payloads with less distortion (almost 30% greater than the conventional method). DOI: 10.17762/ijritcc2321-8169.150510

    Pixel grouping of digital images for reversible data hiding

    Get PDF
    Pixel Grouping (PG) of digital images has been a key consideration in recent development of the Reversible Data Hiding (RDH) schemes. While a PG kernel with neighborhood pixels helps compute image groups for better embedding rate-distortion performance, only horizontal neighborhood pixel group of size 1×3 has so far been considered. In this paper, we formulate PG kernels of sizes 3×1, 2×3 and 3×2 and investigate their effect on the rate-distortion performance of a prominent PG-based RDH scheme. Specially, a kernel of size 3×2 (or 2×3) that creates a pair of pixel-trios having triangular shape and offers a greater possible correlation among the pixels. This kernel thus can be better utilized for improving a PG-based RDH scheme. Considering this, we develop and present an improved PG-based RDH scheme and the computational models of its key processes. Experimental results demonstrated that our proposed RDH scheme offers reasonably better  embedding rate-distortion performance than the original scheme

    Novel Frame work for Improving Embedding Capacity of the System using Reversible Data Hiding Technique

    Get PDF
    Internet communication has become an essential part of infrastructure of today’s world. The secret information communicated in various forms. Security of the secret information has been a challenge when the heavy amount of data is exchanged on the internet. A secure data transfer can be achieved by steganography and Cryptography. Steganography is a process of hiding the information into cover media while cryptography is the technique that encodes the message using encryption key. In this paper described the reversible data hiding concept. This maintains the property that recovered the original cover without loss of data while extracting the embedded message. DOI: 10.17762/ijritcc2321-8169.15072

    Generalized PVO‐based dynamic block reversible data hiding for secure transmission using firefly algorithm

    Get PDF
    In this paper, we proposed a novel generalized pixel value ordering–based reversible data hiding using firefly algorithm (GPVOFA). The sequence of minimum and maximum number pixels value has been used to embed the secret data while prediction and modification are held on minimum, and the maximum number of pixel blocks is used to embed the secret data into multiple bits. The host image is divided into the size of noncoinciding dynamic blocks on the basis of firefly quadtree partition, whereas rough blocks are divided into a larger size; moreover, providing more embedding capacity used small flat blocks size and optimal location in the block to write the information. Our proposed method becomes able to embed large data into a host image with low distortion. The rich experimental results are better, as compared with related preceding arts

    Reversible Data Hiding with a New Local Contrast Enhancement Approach

    Get PDF
    Reversible data hiding schemes hide information into a digital image and simultaneously increase its contrast. The improvements of the different approaches aim to increase the capacity, contrast, and quality of the image. However, recent proposals contrast the image globally and lose local details since they use two common methodologies that may not contribute to obtaining better results. Firstly, to generate vacancies for hiding information, most schemes start with a preprocessing applied to the histogram that may introduce visual distortions and set the maximum hiding rate in advance. Secondly, just a few hiding ranges are selected in the histogram, which means that just limited contrast and capacity may be achieved. To solve these problems, in this paper, a novel approach without preprocessing performs an automatic selection of multiple hiding ranges into the histograms. The selection stage is based on an optimization process, and the iterative-based algorithm increases capacity at embedding execution. Results show that quality and capacity values overcome previous approaches. Additionally, visual results show how greyscale values are better differentiated in the image, revealing details globally and locally

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    MODIFIED MULTI-LEVEL STEGANOGRAPHY TO ENHANCE DATA SECURITY

    Get PDF
    Data-hiding using steganography algorithm becomes an important technique to prevent unauthorized users to have access to a secret data.  In this paper, steganography algorithm has been constructed to hide a secret data in a gray and a color images, this algorithm is named deep hiding/extraction algorithm (DHEA) to modify multi-level steganography (MLS). The suggested hiding algorithm is based on modified least significant bit (MDLSB) to scatter data in a cover-image and it utilizes a number of levels; where each level perform hiding data on a gray image except the last level that applies a color image to keep secret data. Furthermore, proper randomization approach with two layers is implemented; the first layer uses random pixels selection for hiding a secret data at each level, while the second layer implements at the last level to move randomly from segment to the others. In addition, the proposed hiding algorithm implements an effective lossless image compression using DEFLATE algorithm to make it possible to hide data into a next level. Dynamic encryption algorithm based on Advanced Encryption Standard (AES) is applied at each level by changing cipher keys (Ck) from level to the next, this approach has been applied to increase the security and working against attackers. Soft computing using a meta-heuristic approach based on artificial bee colony (ABC) algorithm has been introduced to achieve smoothing on pixels of stego-image, this approach is effective to reduce the noise caused by a hidden large amount of data and to increase a stego-image quality on the last level. The experimental result demonstrates the effectiveness of the proposed algorithm with bee colony DHA-ABC to show high-performing to hide a large amount of data up to four bits per pixel (bpp) with high security in terms of hard extraction of a secret message and noise reduction of the stego-image. Moreover, using deep hiding with unlimited levels is promising to confuse attackers and to compress a deep sequence of images into one image
    • …
    corecore