307 research outputs found

    Static versus dynamic reversibility in CCS

    Get PDF
    The notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Most computational models are not naturally reversible since computation causes loss of information, and history information must be stored to enable reversibility. In the literature, two approaches to reverse the CCS process calculus exist, differing on how history information is kept. Reversible CCS (RCCS), proposed by Danos and Krivine, exploits dedicated stacks of memories attached to each thread. CCS with Keys (CCSK), proposed by Phillips and Ulidowski, makes CCS operators static so that computation does not cause information loss. In this paper we show that RCCS and CCSK are equivalent in terms of LTS isomorphism

    Static versus Dynamic Reversibility in CCS

    Get PDF
    International audienceThe notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Most computational models are not naturally reversible since computation causes loss of information, and history information must be stored to enable reversibility. In the literature, two approaches to reverse the CCS process calculus exist, differing on how history information is kept. Reversible CCS (RCCS), proposed by Danos and Krivine, exploits dedicated stacks of memories attached to each thread. CCS with Keys (CCSK), proposed by Phillips and Ulidowski, makes CCS operators static so that computation does not cause information loss. In this paper we show that RCCS and CCSK are equivalent in terms of LTS isomorphism

    Solid-state transformers in locomotives fed through AC lines: A review and future developments

    Get PDF
    One of the most important innovation expectation in railway electrical equipment is the replacement of the on-board transformer with a high power converter. Since the transformer operates at line-frequency (i.e., 50 Hz or 16 2/3 Hz), it represents a critical component from weight point of view and, moreover, it is characterized by quite poor efficiency. High power converters for this application are characterized by a medium frequency inductive coupling and are commonly referred as Power Electronic Transformers (PET), Medium Frequency Topologies or Solid-State Transformers (SST). Many studies were carried out and various prototypes were realized until now, however, the realization of such a system has some difficulties, mainly related to the high input voltage (i.e., 25 kV for 50 Hz lines and 15 kV for 16 2/3 Hz lines) and the limited performance of available power electronic switches. The aim of this study is to present a survey on the main solutions proposed in the technical literature and, analyzing pros and cons of these studies, to introduce new possible circuit topologies for this application

    Review of MVDC applications, technologies, and future prospects

    Get PDF
    This paper presents a complete review of MVDC applications and their required technologies. Four main MVDC applications were investigated: rail, shipboard systems, distribution grids, and offshore collection systems. For each application, the voltage and power levels, grid structures, converter topologies, and protection and control structure were reviewed. Case studies of the varying applications as well as the literature were analyzed to ascertain the common trends and to review suggested future topologies. For rail, ship, and distribution systems, the technology and ability to implement MVDC grids is available, and there are already a number of case studies. Offshore wind collection systems, however, are yet able to be implemented. Across the four applications, the MVDC voltages ranged from 5–50 kV DC and tens of MW, with some papers suggesting an upper limit of 100 kV DC and hundreds of MV for distribution networks and offshore wind farm applications. This enables the use of varying technologies at both the lower and high voltage ranges, giving flexibility in the choice of topology that is required required

    CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS

    Get PDF
    The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research
    • 

    corecore