34 research outputs found

    Mapping and Assessing Impacts of Land Use and Land Cover Change by Means of Advanced Remote Sensing Approach:: Mapping and Assessing Impacts of Land Use and Land Cover Change by Means of Advanced Remote Sensing Approach:: A case Study of Gash Agricultural Scheme, Eastern Sudan

    Get PDF
    Risks and uncertainties are unavoidable in agriculture in Sudan, due to its dependence on climatic factors and to the imperfect nature of the agricultural decisions and policies attributed to land cover and land use changes that occur. The current study was conducted in the Gash Agricultural Scheme (GAS) - Kassala State, as a semi-arid land in eastern Sudan. The scheme has been established to contribute to the rural development, to help stability of the nomadic population in eastern Sudan, particularly the local population around the Gash river areas, and to facilitate utilizing the river flood in growing cotton and other cash crops. In the last decade, the scheme production has declined, because of drought periods, which hit the region, sand invasion and the spread of invasive mesquite trees, in addition to administrative negligence. These have resulted also in poor agricultural productivity and the displacement of farmers away from the scheme area. Recently, the scheme is heavily disturbed by human intervention in many aspects. Consequently, resources of cultivated land have shrunk and declined during the period of the study, which in turn have led to dissatisfaction and increasing failure of satisfying increasing farmer’s income and demand for local consumption. Remote sensing applications and geospatial techniques have played a key role in studying different types of hazards whether they are natural or manmade. Multi-temporal satellite data combined with ancillary data were used to monitor, analyze and to assess land use and land cover (LULC) changes and the impact of land degradation on the scheme production, which provides the managers and decision makers with current and improved data for the purposes of proper administration of natural resources in the GAS. Information about patterns of LULC changes through time in the GAS is not only important for the management and planning, but also for a better understanding of human dimensions of environmental changes at regional scale. This study attempts to map and assess the impacts of LULC change and land degradation in GAS during a period of 38 years from 1972-2010. Dry season multi-temporal satellite imagery collected by different sensor systems was selected such as three cloud-free Landsat (MSS 1972, TM 1987 and ETM+ 1999) and ASTER (2010) satellite imagery. This imagery was geo-referenced and radiometrically and atmospherically calibrated using dark object subtraction (DOS). Two approaches of classification (object-oriented and pixel-based) were applied for classification and comparison of LULC. In addition, the study compares between the two approaches to determine which one is more compatible for classification of LULC of the GAS. The pixel-based approach performed slightly better than the object-oriented approach in the classification of LULC in the study area. Application of multi-temporal remote sensing data proved to be successful for the identification and mapping of LULC into five main classes as follows: woodland dominated by dense mesquite trees, grass and shrubs dominated by less dense mesquite trees, bare and cultivated land, stabilized fine sand and mobile sand. After image enhancement successful classification of imagery was achieved using pixel and object based approaches as well as subsequent change detection (image differencing and change matrix), supported by classification accuracy assessments and post-classification. Comparison of LULC changes shows that the land cover of GAS has changed dramatically during the investigated period. It has been discovered that more significant of LULC change processes occurred during the second studied period (1987 to 1999) than during the first period (1972-1987). In the second period nearly half of bare and cultivated lands was changed from 41372.74 ha (20.22 %) in 1987 to 28020.80 ha (13.60 %) in 1999, which was mainly due to the drought that hit the region during the mentioned period. However, the results revealed a drastic loss of bare and cultivated land, equivalent to more than 40% during the entire period (1972-2010). Throughout the whole period of study, drought and invasion of both mesquite trees and sand were responsible for the loss of more than 40% of the total productive lands. Change vector analysis (CVA) as a useful approach was applied for estimating change detection in both magnitude and direction of change. The promising approach of multivariate alteration detection (MAD) and subsequent maximum autocorrelation factor (MAD/MAF) transformation was used to support change detection via assessment of maximum correlation between the transformed variates and the specific original image bands related to specific land cover classes. However, both CVA and MAD/MAD strongly prove the fact that bare and cultivated land have dramatically changed and decreased continuously during the studied period. Both CVA and MAD/MAD demonstrate adequate potentials for monitoring, detecting, identifying and mapping the changes. Moreover, this research demonstrated that CVA and MAD/MAF are superior in providing qualitative details about the nature of all kinds of change. Vegetation indices (VI) such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified adjusted vegetation index (MSAVI) and grain soil index (GSI) were applied to measure the quantitative characterization of temporal and spatial vegetation cover patterns and change. All indices remain very sensitive to structure variation of LULC. The results reveal that the NDVI is more effective for detecting the amount and status of the vegetation cover in the study area than SAVI, MSAVI and GSI. Therefore, it can be stated that NDVI can be used as a response variable to identify drought disturbance and land degradation in semi-arid land such as the GAS area. Results of detecting vegetation cover observed by using SAVI were found to be more reasonable than using MSAVI, although MSAVI reduces the background of bare soil better than SAVI. GSI proves high efficiency in determining the different types of surface soils, and producing a change map of top soil grain size, which is useful in assessment of land degradation in the study area. The linkage between socio-economic data and remotely sensed data was applied to determine the relationships between the different factors derived and to analyze the reasons for change in LULC and land degradation and its effects in the study area. The results indicate a strong relationship between LULC derived from remotely sensed data and the influencing socioeconomic variables. The results obtained from analyzing socioeconomic data confirm the findings of remote sensing data analysis, which assure that the decline and degradation of agricultural land is a result of further spread of mesquite trees and of increased invasion of sand during the study period. High livestock density and overgrazing, drought, invasion of sand, spread of invasive mesquite trees, overexploitation of land, improper management, and population growth were considered as the main direct factors responsible for degradation in the study area

    Experimental and Data-driven Workflows for Microstructure-based Damage Prediction

    Get PDF
    Materialermüdung ist die häufigste Ursache für mechanisches Versagen. Die Degradationsmechanismen, welche die Lebensdauer von Bauteilen bei vergleichsweise ausgeprägten zyklischen Belastungen bestimmen, sind gut bekannt. Bei Belastungen im makroskopisch elastischen Bereich hingegen, der (sehr) hochzyklischen Ermüdung, bestimmen die innere Struktur eines Werkstoffs und die Wechselwirkung kristallografischer Defekte die Lebensdauer. Unter diesen Umständen sind die inneren Degradationsphänomene auf der mikroskopischen Skala weitgehend reversibel und führen nicht zur Bildung kritischer Schädigungen, die kontinuierlich wachsen können. Allerdings sind einige Kornensembles in polykristallinen Metallen, je nach den lokalen mikrostrukturellen Gegebenheiten, anfällig für Schädigungsinitiierung, Rissbildung und -wachstum und wirken daher als Schwachstellen. Daher weisen Bauteile, die solchen Belastungen ausgesetzt sind, oft eine ausgeprägte Lebensdauerstreuung auf. Die Tatsache, dass ein umfassendes mechanistisches Verständnis für diese Degradationsprozesse in verschiedenen Werkstoffen nicht vorliegt, hat zur Folge, dass die derzeitigen Modellierungsbemühungen die mittlere Lebensdauer und ihre Varianz in der Regel nur mit unbefriedigender Genauigkeit vorhersagen. Dies wiederum erschwert die Bauteilauslegung und macht die Nutzung von Sicherheitsfaktoren während des Dimensionierungsprozesses erforderlich. Abhilfe kann geschaffen werden, indem umfangreiche Daten zu Einflussfaktoren und deren Wirkung auf die Bildung initialer Ermüdungsschädigungen erhoben werden. Die Datenknappheit wirkt sich nach wie vor negativ auf Datenwissenschaftler und Modellierungsexperten aus, die versuchen, trotz geringer Stichprobengröße und unvollständigen Merkmalsräumen, mikrostrukturelle Abhängigkeiten abzuleiten, datengetriebene Vorhersagemodelle zu trainieren oder physikalische, regelbasierte Modelle zu parametrisieren. Die Tatsache, dass nur wenige kritische Schädigungen bezogen auf das gesamte Probenvolumen auftreten und die hochzyklische Ermüdung eine Vielzahl unterschiedlicher Abhängigkeiten aufweist, impliziert einige Anforderungen an die Datenerfassung und -verarbeitung. Am wichtigsten ist, dass die Messtechniken so empfindlich sind, dass nuancierte Schwankungen im Probenzustand erfasst werden können, dass die gesamte Routine effizient ist und dass die korrelative Mikroskopie räumliche Informationen aus verschiedenen Messungen miteinander verbindet. Das Hauptziel dieser Arbeit besteht darin, einen Workflow zu etablieren, der den Datenmangel behebt, so dass die zukünftige virtuelle Auslegung von Komponenten effizienter, zuverlässiger und nachhaltiger gestaltet werden kann. Zu diesem Zweck wird in dieser Arbeit ein kombinierter experimenteller und datenverarbeitender Workflow vorgeschlagen, um multimodale Datensätze zu Ermüdungsschädigungen zu erzeugen. Der Schwerpunkt liegt dabei auf dem Auftreten von lokalen Gleitbändern, der Rissinitiierung und dem Wachstum mikrostrukturell kurzer Risse. Der Workflow vereint die Ermüdungsprüfung von mesoskaligen Proben, um die Empfindlichkeit der Schädigungsdetektion zu erhöhen, die ergänzende Charakterisierung, die multimodale Registrierung und Datenfusion der heterogenen Daten, sowie die bildverarbeitungsbasierte Schädigungslokalisierung und -bewertung. Mesoskalige Biegeresonanzprüfung ermöglicht das Erreichen des hochzyklischen Ermüdungszustands in vergleichsweise kurzen Zeitspannen bei gleichzeitig verbessertem Auflösungsvermögen der Schädigungsentwicklung. Je nach Komplexität der einzelnen Bildverarbeitungsaufgaben und Datenverfügbarkeit werden entweder regelbasierte Bildverarbeitungsverfahren oder Repräsentationslernen gezielt eingesetzt. So sorgt beispielsweise die semantische Segmentierung von Schädigungsstellen dafür, dass wichtige Ermüdungsmerkmale aus mikroskopischen Abbildungen extrahiert werden können. Entlang des Workflows wird auf einen hohen Automatisierungsgrad Wert gelegt. Wann immer möglich, wurde die Generalisierbarkeit einzelner Workflow-Elemente untersucht. Dieser Workflow wird auf einen ferritischen Stahl (EN 1.4003) angewendet. Der resultierende Datensatz verknüpft unter anderem große verzerrungskorrigierte Mikrostrukturdaten mit der Schädigungslokalisierung und deren zyklischer Entwicklung. Im Zuge der Arbeit wird der Datensatz wird im Hinblick auf seinen Informationsgehalt untersucht, indem detaillierte, analytische Studien zur einzelnen Schädigungsbildung durchgeführt werden. Auf diese Weise konnten unter anderem neuartige, quantitative Erkenntnisse über mikrostrukturinduzierte plastische Verformungs- und Rissstopmechanismen gewonnen werden. Darüber hinaus werden aus dem Datensatz abgeleitete kornweise Merkmalsvektoren und binäre Schädigungskategorien verwendet, um einen Random-Forest-Klassifikator zu trainieren und dessen Vorhersagegüte zu bewerten. Der vorgeschlagene Workflow hat das Potenzial, die Grundlage für künftiges Data Mining und datengetriebene Modellierung mikrostrukturempfindlicher Ermüdung zu legen. Er erlaubt die effiziente Erhebung statistisch repräsentativer Datensätze mit gleichzeitig hohem Informationsgehalt und kann auf eine Vielzahl von Werkstoffen ausgeweitet werden

    Spline wavelet image coding and synthesis for a VLSI based difference engine

    Get PDF
    Bibliography: leaves 142-146.The efficiency of an image compression/synthesis system based on a spline multi-resolution analysis (MRA) is investigated. The proposed system uses a quadratic spline wavelet transform combined with minimum-mean squared error vector quantization to achieve image compression. Image synthesis is accomplished by utilizing the properties of the MRA and the architecture of a custom designed display processor, the Difference Engine. The latter is ideally suited to rendering images with polynomial intensity profiles, such as those generated by the proposed spline :V1RA. Based on these properties, an adaptive image synthesis system is developed which enables one to reduce the number of instruction cycles required to reproduce images compressed using the quadratic spline wavelet transform. This adaptive approach is computationally simple and fairly robust. In addition, there is little overhead involved in its implementation

    Flowing matter

    Get PDF
    This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena.Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents.Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter.This book is the legacy of the COST Action MP1305 “Flowing Matter”

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Quantifying the spatio-temporal dynamics of woody plant encroachment using an integrative remote sensing, GIS, and spatial modeling approach.

    Get PDF
    Despite a longstanding universal concern about and intensive research into woody plant encroachment (WPE)---the replacement of grasslands by shrub- and woodlands---our accumulated understanding of the process has either not been translated into sustainable rangeland management strategies or with only limited success. In order to increase our scientific insights into WPE, move us one step closer toward the sustainable management of rangelands affected by or vulnerable to the process, and identify needs for a future global research agenda, this dissertation presents an unprecedented critical, qualitative and quantitative assessment of the existing literature on the topic and evaluates the utility of an integrative remote sensing, GIS, and spatial modeling approach for quantifying the spatio-temporal dynamics of WPE.In sum, this dissertation demonstrates that integrative remote sensing, GIS, and spatial modeling approaches have enormous potential for addressing questions relevant to both rangelands research and management. However, it also suggests that much work remains to be done before we can translate our understanding of WPE into sustainable rangeland management strategies. In particular, we need to more fully explore the limitations and potentials of currently available data and techniques for quantifying WPE; build structures for data sharing and integration; develop a set of relevant standards; more actively engage in collaborative research efforts; and foster cross-cutting dialogues among researchers, managers, and communities.Specifically, this research demonstrates that the application of cutting-edge remote sensing techniques (Multiple Endmember Spectral Mixture Analysis, fuzzy logic-based change detection) to conventional medium spatial and spectral resolution imagery (Landsat Thematic Mapper, Landsat Enhanced Thematic Mapper Plus, ASTER) can be used to generate spatially explicit estimates of temporal changes in the abundance of woody plants and other surface materials. The research also shows that spatial models (Geographically Weighted Regression, Weights of Evidence, Weighted Logistic Regression) integrating this timely remotely sensed information with readily available GIS data can yield reasonably accurate estimates of an area's relative vulnerability to WPE and of the importance of anthropogenic and geoecological variables influencing the process. Such models may also be used for the testing of existing and generation of new scientific hypotheses about WPE, for evaluating the impact of natural or human-induced modifications of a landscape on the landscape's vulnerability to WPE, and for identifying target areas for conservation, restoration, or other management objectives.Findings from this research suggest that gaps in our current understanding of WPE and difficulties in devising sustainable rangeland management strategies are in part due to the complex spatio-temporal web of interactions between geoecological and anthropogenic variables involved in the process as well as limitations of presently available data and techniques. However, an in-depth analysis of the published literature also reveals that aforementioned problems are caused by two further crucial factors: the absence of information acquisition and reporting standards and the relative lack of long-term, large-scale, multi-disciplinary research efforts. The methodological framework proposed in this dissertation yields data that are easily standardized according to various criteria and facilitates the integration of spatially explicit data generated by a variety of studies. This framework may thus provide one common ground for scientists from a diversity of fields. Also, it has utility for both research and management

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement

    Teaching and Learning of Fluid Mechanics

    Get PDF
    This book contains research on the pedagogical aspects of fluid mechanics and includes case studies, lesson plans, articles on historical aspects of fluid mechanics, and novel and interesting experiments and theoretical calculations that convey complex ideas in creative ways. The current volume showcases the teaching practices of fluid dynamicists from different disciplines, ranging from mathematics, physics, mechanical engineering, and environmental engineering to chemical engineering. The suitability of these articles ranges from early undergraduate to graduate level courses and can be read by faculty and students alike. We hope this collection will encourage cross-disciplinary pedagogical practices and give students a glimpse of the wide range of applications of fluid dynamics
    corecore