1,273 research outputs found

    Metamorphic Domain-Specific Languages: A Journey Into the Shapes of a Language

    Get PDF
    External or internal domain-specific languages (DSLs) or (fluent) APIs? Whoever you are -- a developer or a user of a DSL -- you usually have to choose your side; you should not! What about metamorphic DSLs that change their shape according to your needs? We report on our 4-years journey of providing the "right" support (in the domain of feature modeling), leading us to develop an external DSL, different shapes of an internal API, and maintain all these languages. A key insight is that there is no one-size-fits-all solution or no clear superiority of a solution compared to another. On the contrary, we found that it does make sense to continue the maintenance of an external and internal DSL. The vision that we foresee for the future of software languages is their ability to be self-adaptable to the most appropriate shape (including the corresponding integrated development environment) according to a particular usage or task. We call metamorphic DSL such a language, able to change from one shape to another shape

    Domain Specific Languages for Managing Feature Models: Advances and Challenges

    Get PDF
    International audienceManaging multiple and complex feature models is a tedious and error-prone activity in software product line engineering. Despite many advances in formal methods and analysis techniques, the supporting tools and APIs are not easily usable together, nor unified. In this paper, we report on the development and evolution of the Familiar Domain-Specific Language (DSL). Its toolset is dedicated to the large scale management of feature models through a good support for separating concerns, composing feature models and scripting manipulations. We overview various applications of Familiar and discuss both advantages and identified drawbacks. We then devise salient challenges to improve such DSL support in the near future

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    A Product Line Systems Engineering Process for Variability Identification and Reduction

    Full text link
    Software Product Line Engineering has attracted attention in the last two decades due to its promising capabilities to reduce costs and time to market through reuse of requirements and components. In practice, developing system level product lines in a large-scale company is not an easy task as there may be thousands of variants and multiple disciplines involved. The manual reuse of legacy system models at domain engineering to build reusable system libraries and configurations of variants to derive target products can be infeasible. To tackle this challenge, a Product Line Systems Engineering process is proposed. Specifically, the process extends research in the System Orthogonal Variability Model to support hierarchical variability modeling with formal definitions; utilizes Systems Engineering concepts and legacy system models to build the hierarchy for the variability model and to identify essential relations between variants; and finally, analyzes the identified relations to reduce the number of variation points. The process, which is automated by computational algorithms, is demonstrated through an illustrative example on generalized Rolls-Royce aircraft engine control systems. To evaluate the effectiveness of the process in the reduction of variation points, it is further applied to case studies in different engineering domains at different levels of complexity. Subject to system model availability, reduction of 14% to 40% in the number of variation points are demonstrated in the case studies.Comment: 12 pages, 6 figures, 2 tables; submitted to the IEEE Systems Journal on 3rd June 201

    Model analytics and management

    Get PDF

    MaĂźgeschneiderte Produktlinienextraktion

    Get PDF
    Industry faces an increasing number of challenges regarding the functionality, efficiency and reliability of software. A common approach to reduce the linked development effort and respective costs are model-based languages, such as Matlab/Simulink and statecharts. While these languages help companies during development of single systems, the high demand for customized software is an increasing challenge. As a result, variants with high similarity and only slight differences have to be developed in an efficient way. As reimplementation of complex functionality for each variant is no option, copies of existing solutions are often modified for new customers. In the short-run, this so-called clone-and-own approach allows to save costs as existing solutions can easily be reused. However, this approach also involves risks as the relations between the copied systems are rarely documented and errors have to be fixed for each variant in isolation. Thus, with a growing number of potentially large system copies, the resulting maintenance effort can become a problem. To overcome these problems, this thesis contributes an approach to semi-automatically migrate existing model variants to software product lines. These product lines allow to generate all variants from the identified reusable artifacts. As industry uses a variety of different modeling languages, the focus of the approach lies on an easy adaptation for different languages. Furthermore, the approach can be custom-tailored to include domain knowledge or language-specific details in the variability identification. The first step of the approach performs a high-level analysis of variants to identify outliers (e.g., variants that diverged too much from the rest) and clusters of strongly related variants. The second step executes variability mining to identify corresponding low-level variability relations (i.e. the common and varying parts) for these clusters. The third step uses these detailed variability relations for an automatic migration of the compared variants to a delta-oriented software product line. The approach is evaluated using publicly available case studies with industrial background as well as model variants provided by an industry partner.Die Industrie steht einer steigenden Anzahl an Herausforderungen bezüglich der Funktionalität, Effizienz und Zuverlässigkeit von Software gegenüber. Um den damit verbundenen Entwicklungsaufwand und entsprechende Kosten zu reduzieren, werden häufig modellbasierte Sprachen wie Matlab/Simulink oder Zustandsautomaten eingesetzt. Obwohl diese Sprachen die Unternehmen während der Entwicklung von Einzelsystemen unterstützen, führt die große Nachfrage nach maßgeschneiderter Software zu neuen Herausforderungen. Entsprechend müssen Varianten mit hoher Ähnlichkeit und nur geringfügigen Unterschieden effizient entwickelt werden. Da eine Neuimplementierung komplexer Funktionalität für jede Variante keine Option darstellt, werden häufig Kopien existierender Lösungen für Kunden angepasst. Auf kurze Sicht ermöglicht dieser sogenannte clone-and-own-Ansatz Kosten zu sparen, da existierende Lösungen leicht wiederverwendet werden können. Jedoch birgt der Ansatz auch Risiken, da Beziehungen zwischen den Systemkopien selten dokumentiert werden und Fehler für jede der Variante einzeln behoben werden müssen. Somit kann mit einer wachsenden Anzahl an möglicherweise umfangreichen Systemkopien der Wartungsaufwand zu einem Problem werden. Um diese Probleme zu lösen, bietet diese Arbeit einen Ansatz zur semi-automatischen Überführung existierender Modellvarianten in Softwareproduktlinien. Diese ermöglichen eine anschließende Generierung der Varianten aus den identifizierten wiederverwendbaren Artefakten. Da in der Industrie eine große Menge von Modellierungssprachen eingesetzt wird, liegt der Fokus auf der einfachen Adaption für unterschiedliche Sprachen. Zusätzlich kann durch Einbeziehung von Expertenwissen oder sprachspezifische Details die Variabilitätsidentifikation beeinflusst werden. Der erste Schritt des Ansatzes analysiert die Varianten auf hohem Abstraktionslevel, um Außenseiter (z.B. Varianten die stark von den restlichen Variaten abweichen) und Cluster von stark verwandten Varianten zu identifizieren. Der zweite Schritt analysiert diese Cluster auf niedrigem Abstraktionslevel, um entsprechende Variabilitätsrelationen (d.h. gemeinsame und unterschiedliche Teile) zu identifizieren. Der dritte Schritt nutzt diese detaillierten Variabilitätsrelationen für eine automatische Migration der verglichenen Varianten in eine delta-orientierte Softwareproduktlinie. Der Ansatz ist an Fallstudien mit industriellem Kontext sowie Modellvarianten eines Industriepartners evaluiert worden

    Model analytics and management

    Get PDF

    Towards a Universal Variability Language: Master's Thesis

    Get PDF
    While feature diagrams have become the de facto standard to graphically describe variability models in Software Product Line Engineering (SPLE), none of the many textual notations have gained widespread adoption. However, a common textual language would be beneficial for better collaboration and exchange between tools. The main goal of this thesis is to propose a language for this purpose, along with fundamental tool support. The language should meet the needs and preferences of the community, so it can attain acceptance and adoption, without becoming yet another variability language. Its guiding principles are simplicity, familiarity, and flexibility. These enable the language to be easy to learn and to integrate into different tools, while still being expressive enough to represent existing and future models. We incorporate general design principles for Domain-Specific Languages (DSLs), discuss usage scenarios collected by the community, analyze existing languages, and gather feedback directly through questionnaires submitted to the community. In the initial questionnaire, the community was in disagreement on whether to use nesting or references to represent the hierarchy. Thus, we presented two proposals to be compared side by side. Of those, the community clearly prefers the one using nesting, as determined by a second questionnaire. We call that proposal the Universal Variability Language (UVL). The community awards good ratings to this language, deems it suitable for teaching and learning, and estimates that it can represent most of the existing models. Evaluations reconsidering the requirements show that it enables the relevant scenarios and can support the editing of large-scale real-world feature models, such as the Linux kernel. We provide a small default library that can be used in Java, containing a parser and a printer for the language. We integrated it into the variability tool FeatureIDE, demonstrating its utility in quickly adding support for the proposed language. Overall, we can conclude that UVL is well-suited for a base language level of a universal textual variability language. Along with the acquired insights into the requirements for such a language, it can pose as the basis for the SPLE community to commit to a common language. As exchange and collaboration would be simplified, higher-quality research could be conducted and better tools developed, serving the whole community
    • …
    corecore