608,473 research outputs found

    Quantum mechanism helps agents combat Pareto-inefficient social choice rules

    Get PDF
    Quantum strategies have been successfully applied in game theory for years. However, as a reverse problem of game theory, the theory of mechanism design is ignored by physicists. In this paper, we generalize the classical theory of mechanism design to a quantum domain and obtain two results: 1) We find that the mechanism in the proof of Maskin's sufficiency theorem is built on the Prisoners' Dilemma. 2) By virtue of a quantum mechanism, agents who satisfy a certain condition can combat Pareto-inefficient social choice rules instead of being restricted by the traditional mechanism design theory.Quantum games; Mechanism design; Implementation theory; Nash implementation; Maskin monotonicity

    A classical algorithm to break through Maskin's theorem for small-scale cases

    Get PDF
    Quantum mechanics has been applied to game theory for years. A recent work [H. Wu, Quantum mechanism helps agents combat ``bad'' social choice rules. \emph{International Journal of Quantum Information}, 2010 (accepted). Also see http://arxiv.org/pdf/1002.4294v3] has generalized quantum mechanics to the theory of mechanism design (a reverse problem of game theory). Although the quantum mechanism is theoretically feasible, agents cannot benefit from it immediately due to the restriction of current experimental technologies. In this paper, a classical algorithm is proposed to help agents combat ``bad'' social choice rules immediately. The algorithm works well when the number of agents is not very large (e.g., less than 20). Since this condition is acceptable for small-scale cases, it can be concluded that the Maskin's sufficiency theorem has been broken through for small-scale cases just right now. In the future, when the experimental technologies for quantum information are commercially available, the Wu's quantum mechanism will break through the Maskin's sufficiency theorem completely.Quantum games; Prisoners' Dilemma; Mechanism design.

    On the justification of applying quantum strategies to the Prisoners' Dilemma and mechanism design

    Full text link
    The Prisoners' Dilemma is perhaps the most famous model in the field of game theory. Consequently, it is natural to investigate its quantum version when one considers to apply quantum strategies to game theory. There are two main results in this paper: 1) The well-known Prisoners' Dilemma can be categorized into three types and only the third type is adaptable for quantum strategies. 2) As a reverse problem of game theory, mechanism design provides a better circumstance for quantum strategies than game theory does.Comment: 6 pages, 2 figure

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    Get PDF
    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight

    Recent studies on flame stabilization of premixed turbulent gases

    Get PDF
    FLAME stabilization is of importance in the practical design of ramjets and afterburners. It has been studied extensively in recent years, particularly with reference to bluff-body flame-holders. In the present survey we describe the investigations relating to flame holding by bluff bodies as well as new techniques (e.g.,. flame holding by the use of reverse jets) which may prove to be of practical importance in new engine configurations. In Section II we consider the flow field downstream of a bluff-body flame-holder which includes the recirculation zone behind the body and a region of flame spreading farther downstream. Explicit reference is made to crucial experiments which illustrate the nature and magnitude of the velocity field, the physical extent, the temperature, and the gas composition of the recirculation zone. Experimental studies and theoretical predictions of the angle of flame spreading, as well as some observations on unstable flow and the onset of blowoff, will be reviewed. The variation of blowoff velocity with flame-holder design, pressure, and mixture composition is considered briefly in Section III both for single and for adjacent bluff bodies. Also included is a summary of results for blowoff velocities obtained with a reverse-jet flame-holder and with wall recesses. Theoretical studies on the mechanism of flame stabilization form the subject of Section IV. We shall indicate the points on which various proposed models agree and disagree with experiment and attempt to formulate a composite description which is consistent with most of the currently available experimental data both for bluff-body and for reverse-jet flameholders

    On the Precarious Path of Reverse Neuro-Engineering

    Get PDF
    In this perspective we provide an example for the limits of reverse engineering in neuroscience. We demonstrate that application of reverse engineering to the study of the design principle of a functional neuro-system with a known mechanism, may result in a perfectly valid but wrong induction of the system's design principle. If in the very simple setup we bring here (static environment, primitive task and practically unlimited access to every piece of relevant information), it is difficult to induce a design principle, what are our chances of exposing biological design principles when more realistic conditions are examined? Implications to the way we do Biology are discussed

    Ledge Design of InGaP Emitter GaAs Based HBTs

    Get PDF
    A wide range of emitter composition, thickness, and doping is studied via dc current gain measurements on large area GaAs based heterojunction bipolar transistors (HBTs) at both room and elevated temperatures. InGaP emitters offer the widest thickness and doping design window in terms of dc peak current gain, as compared with AlGaAs emitters. Remarkably, a 50 Å InGaP emitter HBT retains 50% gain of a more standard 500 Å emitter device. For state-of-the-art HBTs, a degraded peak gain is argued to be caused by an increased reverse hole injection current (IRHI). In light of previously published results which implicate IRHI as a mechanism for materials limited HBT reliability, we suggest dc current gain measurements on large-area HBTs give meaningful insights into the long term reliability of the structure. Specifically, the wider emitter thickness and doping design window offered by an InGaP emitter HBT could apply to reliability as well as to the demonstrated gain stability
    corecore