117 research outputs found

    Minimum time kinematic trajectories for self-propelled rigid bodies in the unobstructed plane

    Get PDF
    The problem of moving rigid bodies efficiently is of particular interest in robotics because the simplest model of a mobile robot or of a manipulated object is often a rigid body. Path planning, controller design and robot design may all benefit from precise knowledge of optimal trajectories for a set of permitted controls. In this work, we present a general solution to the problem of finding minimum time trajectories for an arbitrary self-propelled, velocity-bounded rigid body in the obstacle-free plane. Such minimum-time trajectories depend on the vehicle’s capabilities and on and the start and goal configurations. For example, the fastest way to move a car sideways might be to execute a parallel-parking motion. The fastest longdistance trajectories for a wheelchair-like vehicle might be of a turn-drive-turn variety. Our analysis reveals a wide variety of types of optimal trajectories. We determine an exhaustive taxonomy of optimal trajectory types, presented as a branching tree. For each of the necessary leaf nodes, we develop a specific algorithm to find the fastest trajectory in that node. The fastest trajectory overall is drawn from this set

    A Comparative Study of Code Query Technologies

    Full text link
    When analyzing software systems we are faced with the challenge of how to implement a particular analysis for different programming languages. A solution for this problem is to write a single analysis using a code query language abstracting from the specificities of languages being analyzed. Over the past ten years many code query technologies have been developed, based on different formalisms. Each technology comes with its own query language and set of features. To determine the state of the art of code querying we compare the languages and tools for seven code query technologies: Grok, Rscript, JRelCal, SemmleCode, JGraLab, CrocoPat and JTransformer. The specification of a package stability metric is used as a running example to compare the languages. The comparison involves twelve criteria, some of which are concerned with properties of the query language (paradigm, types, parametrization, polymorphism, modularity, and libraries), and some of which are concerned with the tool itself (output formats, interactive interface, API support, interchange formats, extraction support, and licensing). We contextualize the criteria in two usage scenarios: interactive and tool integration. We conclude that there is no particularly weak or dominant tool. As important improvement points, we identify the lack of library mechanisms, interchange formats, and possibilities for integration with source code extraction components

    What Does Aspect-Oriented Programming Mean for Functional Programmers?

    Get PDF
    Aspect-Oriented Programming (AOP) aims at modularising crosscutting concerns that show up in software. The success of AOP has been almost viral and nearly all areas in Software Engineering and Programming Languages have become "infected" by the AOP bug in one way or another. Interestingly the functional programming community (and, in particular, the pure functional programming community) seems to be resistant to the pandemic. The goal of this paper is to debate the possible causes of the functional programming community's resistance and to raise awareness and interest by showcasing the benefits that could be gained from having a functional AOP language. At the same time, we identify the main challenges and explore the possible design-space

    The complexity of the classification of Riemann surfaces and complex manifolds

    Get PDF
    In answer to a question by Becker, Rubel, and Henson, we show that countable subsets of ℂ can be used as complete invariants for Riemann surfaces considered up to conformal equivalence, and that this equivalence relation is itself Borel in a natural Borel structure on the space of all such surfaces. We further proceed to precisely calculate the classification difficulty of this equivalence relation in terms of the modern theory of Borel equivalence relations. On the other hand we show that the analog of Becker, Rubel, and Henson's question has a negative solution in (complex) dimension n ≥ 2

    Collected software engineering papers, volume 8

    Get PDF
    A collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period November 1989 through October 1990 is presented. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography. The seven presented papers are grouped into four major categories: (1) experimental research and evaluation of software measurement; (2) studies on models for software reuse; (3) a software tool evaluation; and (4) Ada technology and studies in the areas of reuse and specification

    Detecting Test Clones with Static Analysis

    Get PDF
    Large-scale software systems often have correspondingly complicated test suites, which are diffi cult for developers to construct and maintain. As systems evolve, engineers must update their test suite along with changes in the source code. Tests created by duplicating and modifying previously existing tests (clones) can complicate this task. Several testing technologies have been proposed to mitigate cloning in tests, including parametrized unit tests and test theories. However, detecting opportunities to improve existing test suites is labour intensive. This thesis presents a novel technique for etecting similar tests based on type hierarchies and method calls in test code. Using this technique, we can track variable history and detect test clones based on test assertion similarity. The thesis further includes results from our empirical study of 10 benchmark systems using this technique which suggest that test clone detection by our technique will aid test de-duplication eff orts in industrial systems

    Detecting Test Clones with Static Analysis

    Get PDF
    Large-scale software systems often have correspondingly complicated test suites, which are diffi cult for developers to construct and maintain. As systems evolve, engineers must update their test suite along with changes in the source code. Tests created by duplicating and modifying previously existing tests (clones) can complicate this task. Several testing technologies have been proposed to mitigate cloning in tests, including parametrized unit tests and test theories. However, detecting opportunities to improve existing test suites is labour intensive. This thesis presents a novel technique for etecting similar tests based on type hierarchies and method calls in test code. Using this technique, we can track variable history and detect test clones based on test assertion similarity. The thesis further includes results from our empirical study of 10 benchmark systems using this technique which suggest that test clone detection by our technique will aid test de-duplication eff orts in industrial systems

    Collected software engineering papers, volume 9

    Get PDF
    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1990 through October 1991. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the ninth such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. For the convenience of this presentation, the eight papers contained here are grouped into three major categories: (1) software models studies; (2) software measurement studies; and (3) Ada technology studies. The first category presents studies on reuse models, including a software reuse model applied to maintenance and a model for an organization to support software reuse. The second category includes experimental research methods and software measurement techniques. The third category presents object-oriented approaches using Ada and object-oriented features proposed for Ada. The SEL is actively working to understand and improve the software development process at GSFC
    • …
    corecore