285 research outputs found

    A Rank-Metric Approach to Error Control in Random Network Coding

    Full text link
    The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of K\"otter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if μ\mu erasures and δ\delta deviations occur, then errors of rank tt can always be corrected provided that 2t≤d−1+μ+δ2t \leq d - 1 + \mu + \delta, where dd is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application where nn packets of length MM over FqF_q are transmitted, the complexity of the decoding algorithm is given by O(dM)O(dM) operations in an extension field FqnF_{q^n}.Comment: Minor corrections; 42 pages, to be published at the IEEE Transactions on Information Theor

    Complexity Analysis of Reed-Solomon Decoding over GF(2^m) Without Using Syndromes

    Get PDF
    For the majority of the applications of Reed-Solomon (RS) codes, hard decision decoding is based on syndromes. Recently, there has been renewed interest in decoding RS codes without using syndromes. In this paper, we investigate the complexity of syndromeless decoding for RS codes, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis differs in several aspects from existing asymptotic complexity analysis, which is typically based on multiplicative fast Fourier transform (FFT) techniques and is usually in big O notation. First, we focus on RS codes over characteristic-2 fields, over which some multiplicative FFT techniques are not applicable. Secondly, due to moderate block lengths of RS codes in practice, our analysis is complete since all terms in the complexities are accounted for. Finally, in addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. Comparing the complexities of both syndromeless and syndrome-based decoding algorithms based on direct and fast implementations, we show that syndromeless decoding algorithms have higher complexities than syndrome-based ones for high rate RS codes regardless of the implementation. Both errors-only and errors-and-erasures decoding are considered in this paper. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.Comment: 11 pages, submitted to EURASIP Journal on Wireless Communications and Networkin

    PERFORMANCE COMPARISON OF NON-INTERLEAVED BCH CODES AND INTERLEAVED BCH CODES

    Get PDF
    This project covers the research about the BCH error correcting codes and the performance of interleaved and non-interleaved BCH codes. Both long and short BCH codes for multimedia communication are examined in an A WGN channel. Algorithm for simulating the BCH codes was also being investigated, which includes generating the parity check matrix, generating the message code in Galois array matrix, encoding the message blocks, modulation and decoding the message blocks. Algorithm for interleaving that includes interleaving message, including burst errors and deinterleaving message is combined with the BCH codes algorithm for simulating the interleaved BCH codes. The performance and feasibility of the coding structure are tested. The performance comparison between interleaved and noninterleaved BCH codes is studied in terms of error performance, channel performance and effect of data rates on the bit error rate (BER). The Berlekamp-Massey Algorithm decoding scheme was implemented. Random integers are generated and encoded with BCH encoder. Burst errors are added before the message is interleaved, then enter modulation and channel simulation. Interleaved message is then compared with noninterleaved message and the error statistics are compared. Initially, certain amount of burst errors is used. "ft is found that the graph does not agree with the theoretical bit error rate (BER) versus signal-to-noise ratio (SNR). When compared between each BCH codeword (i.e. n = 31, n = 63 and n = 127), n = 31 shows the highest BER while n = 127 shows the lowest BER. This happened because of the occurrence of error bursts and also due to error frequency. A reduced size or errors from previous is used in the algorithm. A graph similar to the theoretical BER vs SNR is obtained for both interleaved and non-interleaved BCH codes. It is found that BER of non-interleaved is higher than interleaved BCH codes as SNR increases. These observations show that size of errors influence the effect of interleaving. Simulation time is also studied in terms of block length. It is found that interleaved BCH codes consume longer simulation time compared to non-interleaved BCH codes due to additional algorithm for the interleaved BCH codes

    Lemma for Linear Feedback Shift Registers and DFTs Applied to Affine Variety Codes

    Full text link
    In this paper, we establish a lemma in algebraic coding theory that frequently appears in the encoding and decoding of, e.g., Reed-Solomon codes, algebraic geometry codes, and affine variety codes. Our lemma corresponds to the non-systematic encoding of affine variety codes, and can be stated by giving a canonical linear map as the composition of an extension through linear feedback shift registers from a Grobner basis and a generalized inverse discrete Fourier transform. We clarify that our lemma yields the error-value estimation in the fast erasure-and-error decoding of a class of dual affine variety codes. Moreover, we show that systematic encoding corresponds to a special case of erasure-only decoding. The lemma enables us to reduce the computational complexity of error-evaluation from O(n^3) using Gaussian elimination to O(qn^2) with some mild conditions on n and q, where n is the code length and q is the finite-field size.Comment: 37 pages, 1 column, 10 figures, 2 tables, resubmitted to IEEE Transactions on Information Theory on Jan. 8, 201

    Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric

    Full text link
    Codes in the sum-rank metric have various applications in error control for multishot network coding, distributed storage and code-based cryptography. Linearized Reed-Solomon (LRS) codes contain Reed-Solomon and Gabidulin codes as subclasses and fulfill the Singleton-like bound in the sum-rank metric with equality. We propose the first known error-erasure decoder for LRS codes to unleash their full potential for multishot network coding. The presented syndrome-based Berlekamp-Massey-like error-erasure decoder can correct tFt_F full errors, tRt_R row erasures and tCt_C column erasures up to 2tF+tR+tC≤n−k2t_F + t_R + t_C \leq n-k in the sum-rank metric requiring at most O(n2)\mathcal{O}(n^2) operations in Fqm\mathbb{F}_{q^m}, where nn is the code's length and kk its dimension. We show how the proposed decoder can be used to correct errors in the sum-subspace metric that occur in (noncoherent) multishot network coding.Comment: 6 pages, presented at ISIT 202
    • …
    corecore