432 research outputs found

    Market Driven Multi-domain Network Service Orchestration in 5G Networks

    Full text link
    The advent of a new breed of enhanced multimedia services has put network operators into a position where they must support innovative services while ensuring both end-to-end Quality of Service requirements and profitability. Recently, Network Function Virtualization (NFV) has been touted as a cost-effective underlying technology in 5G networks to efficiently provision novel services. These NFV-based services have been increasingly associated with multi-domain networks. However, several orchestration issues, linked to cross-domain interactions and emphasized by the heterogeneity of underlying technologies and administrative authorities, present an important challenge. In this paper, we tackle the cross-domain interaction issue by proposing an intelligent and profitable auction-based approach to allow inter-domains resource allocation

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709

    Leveraging Cloud-based NFV and SDN Platform Towards Quality-Driven Next-Generation Mobile Networks

    Get PDF
    Network virtualization has become a key approach for Network Service Providers (NSPs) to mitigate the challenge of the continually increasing demands for network services. Tightly coupled with their software components, legacy network devices are difficult to upgrade or modify to meet the dynamically changing end-user needs. To virtualize their infrastructure and mitigate those challenges, NSPs have started to adopt Software Defined Networking (SDN) and Network Function Virtualization (NFV). To this end, this thesis addresses the challenges faced on the road of transforming the legacy networking infrastructure to a more dynamic and agile virtualized environment to meet the rapidly increasing demand for network services and serve as an enabler for key emerging technologies such as the Internet of Things (IoT) and 5G networking. The thesis considers different approaches and platforms to serve as an NFV/SDN based cloud applications while closely considering how such an environment deploys its virtualized services to optimize the network and reducing their costs. The thesis starts first by defining the standards of adopting microservices as architecture for NFV. Then, it focuses on the latency-aware deployment approach of virtual network functions (VNFs) forming service function chains (SFC) in a cloud environment. This approach ensures that NSPs still meet their strict quality of service and service level agreements while considering both functional and non-functional constraints of the NFV-based applications such as, delay, resource allocation, and intercorrelation between VNF instances. In addition, the thesis proposes a detailed approach on recovering and handling of those instances by optimizing the decision of migrating or re-instantiating the virtualized services upon a sudden event (failure/overload…). All the proposed approaches contribute to the orchestration of NFV applications to meet the requirements of the IoT and NGNs era

    Enabling heterogeneous network function chaining

    Get PDF
    Today's data center operators deploy network policies in both physical (e.g., middleboxes, switches) and virtualized (e.g., virtual machines on general purpose servers) network function boxes (NFBs), which reside in different points of the network, to exploit their efficiency and agility respectively. Nevertheless, such heterogeneity has resulted in a great number of independent network nodes that can dynamically generate and implement inconsistent and conflicting network policies, making correct policy implementation a difficult problem to solve. Since these nodes have varying capabilities, services running atop are also faced with profound performance unpredictability. In this paper, we propose a Heterogeneous netwOrk Policy Enforcement (HOPE) scheme to overcome these challenges. HOPE guarantees that network functions (NFs) that implement a policy chain are optimally placed onto heterogeneous NFBs such that the network cost of the policy is minimized. We first experimentally demonstrate that the processing capacity of NFBs is the dominant performance factor. This observation is then used to formulate the Heterogeneous Network Policy Placement problem, which is shown to be NP-Hard. To solve the problem efficiently, an online algorithm is proposed. Our experimental results demonstrate that HOPE achieves the same optimality as Branch-and-bound optimization but is 3 orders of magnitude more efficient

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe
    • …
    corecore