766 research outputs found

    On Revenue Monotonicity in Combinatorial Auctions

    Full text link
    Along with substantial progress made recently in designing near-optimal mechanisms for multi-item auctions, interesting structural questions have also been raised and studied. In particular, is it true that the seller can always extract more revenue from a market where the buyers value the items higher than another market? In this paper we obtain such a revenue monotonicity result in a general setting. Precisely, consider the revenue-maximizing combinatorial auction for mm items and nn buyers in the Bayesian setting, specified by a valuation function vv and a set FF of nmnm independent item-type distributions. Let REV(v,F)REV(v, F) denote the maximum revenue achievable under FF by any incentive compatible mechanism. Intuitively, one would expect that REV(v,G)REV(v,F)REV(v, G)\geq REV(v, F) if distribution GG stochastically dominates FF. Surprisingly, Hart and Reny (2012) showed that this is not always true even for the simple case when vv is additive. A natural question arises: Are these deviations contained within bounds? To what extent may the monotonicity intuition still be valid? We present an {approximate monotonicity} theorem for the class of fractionally subadditive (XOS) valuation functions vv, showing that REV(v,G)cREV(v,F)REV(v, G)\geq c\,REV(v, F) if GG stochastically dominates FF under vv where c>0c>0 is a universal constant. Previously, approximate monotonicity was known only for the case n=1n=1: Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and Weinberg (2015) for all subaddtive valuation functions.Comment: 10 page

    Revenue monotonicity in combinatorial auctions

    Full text link

    Randomized Revenue Monotone Mechanisms for Online Advertising

    Full text link
    Online advertising is the main source of revenue for many Internet firms. A central component of online advertising is the underlying mechanism that selects and prices the winning ads for a given ad slot. In this paper we study designing a mechanism for the Combinatorial Auction with Identical Items (CAII) in which we are interested in selling kk identical items to a group of bidders each demanding a certain number of items between 11 and kk. CAII generalizes important online advertising scenarios such as image-text and video-pod auctions [GK14]. In image-text auction we want to fill an advertising slot on a publisher's web page with either kk text-ads or a single image-ad and in video-pod auction we want to fill an advertising break of kk seconds with video-ads of possibly different durations. Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity (RM). RM is a natural constraint which states that the revenue of a mechanism should not decrease if the number of participants increases or if a participant increases her bid. [GK14] showed that no deterministic RM mechanism can attain PoRM of less than ln(k)\ln(k) for CAII, i.e., no deterministic mechanism can attain more than 1ln(k)\frac{1}{\ln(k)} fraction of the maximum social welfare. [GK14] also design a mechanism with PoRM of O(ln2(k))O(\ln^2(k)) for CAII. In this paper, we seek to overcome the impossibility result of [GK14] for deterministic mechanisms by using the power of randomization. We show that by using randomization, one can attain a constant PoRM. In particular, we design a randomized RM mechanism with PoRM of 33 for CAII
    corecore