83 research outputs found

    Parallel Performance of MPI Sorting Algorithms on Dual-Core Processor Windows-Based Systems

    Full text link
    Message Passing Interface (MPI) is widely used to implement parallel programs. Although Windowsbased architectures provide the facilities of parallel execution and multi-threading, little attention has been focused on using MPI on these platforms. In this paper we use the dual core Window-based platform to study the effect of parallel processes number and also the number of cores on the performance of three MPI parallel implementations for some sorting algorithms

    One-Sided Communication for High Performance Computing Applications

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009Parallel programming presents a number of critical challenges to application developers. Traditionally, message passing, in which a process explicitly sends data and another explicitly receives the data, has been used to program parallel applications. With the recent growth in multi-core processors, the level of parallelism necessary for next generation machines is cause for concern in the message passing community. The one-sided programming paradigm, in which only one of the two processes involved in communication actively participates in message transfer, has seen increased interest as a potential replacement for message passing. One-sided communication does not carry the heavy per-message overhead associated with modern message passing libraries. The paradigm offers lower synchronization costs and advanced data manipulation techniques such as remote atomic arithmetic and synchronization operations. These combine to present an appealing interface for applications with random communication patterns, which traditionally present message passing implementations with difficulties. This thesis presents a taxonomy of both the one-sided paradigm and of applications which are ideal for the one-sided interface. Three case studies, based on real-world applications, are used to motivate both taxonomies and verify the applicability of the MPI one-sided communication and Cray SHMEM one-sided interfaces to real-world problems. While our results show a number of short-comings with existing implementations, they also suggest that a number of applications could benefit from the one-sided paradigm. Finally, an implementation of the MPI one-sided interface within Open MPI is presented, which provides a number of unique performance features necessary for efficient use of the one-sided programming paradigm

    Improving MPI Threading Support for Current Hardware Architectures

    Get PDF
    Threading support for Message Passing Interface (MPI) has been defined in the MPI standard for more than twenty years. While many standard-compliance MPI implementations fully support multithreading, the threading support in MPI still cannot provide the optimal performance on the same level as the non-threading environment. The performance disparity leads to low adoption rate from applications, and eventually, lesser interest in optimizing MPI threading support. However, with the current advancement in computation hardware, the number of CPU core per packet is growing drastically. Using shared-memory MPI communication has become more costly. MPI threading without local communication is one of the alternatives and the some interests are shifting back toward threading to MPI.In this work, we investigate different approaches to leverage the power of thread parallelism and tools to help us to raise the multi-threaded MPI performance to reasonable level. We propose a novel multi-threaded MPI benchmark with multiple communication patterns to stress multiple points of the MPI implementation, with the ability to switch between using MPI process and threads for quick comparison between two modes. Enabling the us, and the others MPI developers to stress test their implementation design.We address the interoperability between MPI implementation and threading frameworks by introducing the thread-synchronization object, an object that gives the MPI implementation more control over user-level thread, allowing for more thread utilization in MPI. In our implementation, the synchronization object relieves the lock contention on the internal progress engine and able to achieve up to 7x the performance of the original implementation. Moving forward, we explore the possibility of harnessing the true thread concurrency. We proposed several strategies to address the bottlenecks in MPI implementation. From our evaluation, with our novel threading optimization, we can achieve up to 22x the performance comparing to the legacy MPI designs

    Load Balancing Algorithms for Parallel Spatial Join on HPC Platforms

    Get PDF
    Geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of geospatial computations and analytics on large scale datasets, parallel processing is necessary. To exploit fine-grained parallel processing on large scale compute clusters, partitioning of skewed datasets in a load-balanced way is challenging. The workload in spatial join is data dependent and highly irregular. Moreover, wide variation in the size and density of geometries from one region of the map to another, further exacerbates the load imbalance. This dissertation focuses on spatial join operation used in Geographic Information Systems (GIS) and spatial databases, where the inputs are two layers of geospatial data, and the output is a combination of the two layers according to join predicate.This dissertation introduces a novel spatial data partitioning algorithm geared towards load balancing the parallel spatial join processing. Unlike existing partitioning techniques, the proposed partitioning algorithm divides the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. This workload partitioning algorithm has been evaluated on a high-performance computing system using real-world datasets. An intermediate output-sensitive duplication avoidance technique is proposed that decreases the external memory space requirement for storing spatial join candidates across the partitions. GPU acceleration is used to further reduce the spatial partitioning runtime. For dynamic load balancing in spatial join, a novel framework for fine-grained work stealing is presented. This framework is efficient and NUMA-aware. Performance improvements are demonstrated on shared and distributed memory architectures using threads and message passing. Experimental results show effective mitigation of data skew. The framework supports a variety of spatial join predicates and spatial overlay using partitioned and un-partitioned datasets

    Providing Insight into the Performance of Distributed Applications Through Low-Level Metrics

    Get PDF
    The field of high-performance computing (HPC) has always dealt with the bleeding edge of computational hardware and software to achieve the maximum possible performance for a wide variety of workloads. When dealing with brand new technologies, it can be difficult to understand how these technologies work and why they work the way they do. One of the more prevalent approaches to providing insight into modern hardware and software is to provide tools that allow developers to access low-level metrics about their performance. The modern HPC ecosystem supports a wide array of technologies, but in this work, I will be focusing on two particularly influential technologies: The Message Passing Interface (MPI), and Graphical Processing Units (GPUs).For many years, MPI has been the dominant programming paradigm in HPC. Indeed, over 90% of applications that are a part of the U.S. Exascale Computing Project plan to use MPI in some fashion. The MPI Standard provides programmers with a wide variety of methods to communicate between processes, along with several other capabilities. The high-level MPI Profiling Interface has been the primary method for profiling MPI applications since the inception of the MPI Standard, and more recently the low-level MPI Tool Information Interface was introduced.Accelerators like GPUs have been increasingly adopted as the primary computational workhorse for modern supercomputers. GPUs provide more parallelism than traditional CPUs through a hierarchical grid of lightweight processing cores. NVIDIA provides profiling tools for their GPUs that give access to low-level hardware metrics.In this work, I propose research in applying low-level metrics to both the MPI and GPU paradigms in the form of an implementation of low-level metrics for MPI, and a new method for analyzing GPU load imbalance with a synthetic efficiency metric. I introduce Software-based Performance Counters (SPCs) to expose internal metrics of the Open MPI implementation along with a new interface for exposing these counters to users and tool developers. I also analyze a modified load imbalance formula for GPU-based applications that uses low-level hardware metrics provided through nvprof in a hierarchical approach to take the internal load imbalance of the GPU into account

    Runtime support for irregular computation in MPI-based applications

    Get PDF
    In recent years there are increasing number of applications that have been using irregular computation models in various domains, such as computational chemistry, bioinformatics, nuclear reactor simulation and social network analysis. Due to the irregular and data-dependent communication patterns and sparse data structures involved in those applications, the traditional parallel programming model and runtime need to be carefully designed and implemented in order to accommodate the performance and scalability requirements of those irregular applications on large-scale systems. The Message Passing Interface (MPI) is the industry standard communication library for high performance computing. However, whether MPI can serve as a suitable programming model / runtime for irregular applications or not is one of the most debated aspects in the community. The goal of this thesis is to investigate the suitability of MPI to irregular applications. This thesis consists of two subtopics. The first subtopic focuses on improving MPI runtime to support the irregular applications from perspective of scalability and performance. The first three parts in this subtopic focus on MPI one-sided communication. In the first part, we present a thorough survey of current MPI one-sided implementations and illustrate scalability limitations in those implementations. In the second part, we propose a new design and implementation of MPI one-sided communication, called ScalaRMA, to effectively address those scalability limitations. The third part in this subtopic focuses on various issuing strategies in MPI one-sided communication. We propose an adaptive issuing strategy which can adaptively choose between delayed issuing strategy and eager issuing strategy in MPI runtime to achieve high performance based on current communication volume in MPI-based application. The last part in this subtopic is to tackle the scalability limitations in the virtual connection (VC) objects in MPI implementation. We propose a scalable design to reduce the memory consumption of VC objects in MPI runtime. The second subtopic of this thesis focuses on improving MPI programming model to better support the irregular applications. Traditional two-sided data movement model in MPI standard designed for scientific computation provides a paradigm for user to specify how to move the data between processes, however, it does not provide interface to flexibly manage the computation, which means user needs to explicitly manage where the computation should be performed. This model is not well suited for irregular applications which involve irregular and data-dependent communication pattern. In this work, we combine Active Messages (AM), an alternative programming paradigm which is more suitable for irregular computations, with traditional MPI data movement model, and propose a generalized MPI-interoperable Active Messages framework (MPI-AM). The framework allows MPI-based applications to incrementally use AMs only when necessary, avoiding rewriting the entire MPI-based application. Such framework integrates data movement and computation together in the programming model and MPI can coordinate the computation and communication in a much more flexible manner. In this subtopic, we propose several strategies including message streaming, buffer management and asynchronous processing, in order to efficiently handle AMs inside MPI. We also propose subtle correctness semantics of MPI-AM to define how AMs can work correctly with other MPI messages in the system, from perspectives of memory consistency, concurrency, ordering and atomicity

    Accelerating MPI collective communications through hierarchical algorithms with flexible inter-node communication and imbalance awareness

    Get PDF
    This work presents and evaluates algorithms for MPI collective communication operations on high performance systems. Collective communication algorithms are extensively investigated, and a universal algorithm to improve the performance of MPI collective operations on hierarchical clusters is introduced. This algorithm exploits shared-memory buffers for efficient intra-node communication while still allowing the use of unmodified, hierarchy-unaware traditional collectives for inter-node communication. The universal algorithm shows impressive performance results with a variety of collectives, improving upon the MPICH algorithms as well as the Cray MPT algorithms. Speedups average 15x - 30x for most collectives with improved scalability up to 65536 cores.^ Further novel improvements are also proposed for inter-node communication. By utilizing algorithms which take advantage of multiple senders from the same shared memory buffer, an additional speedup of 2.5x can be achieved. The discussion also evaluates special-purpose extensions to improve intra-node communication. These extensions return a shared memory or copy-on-write protected buffer from the collective, which reduces or completely eliminates the second phase of intra-node communication.^ The second part of this work improves the performance of MPI collective communication operations in the presence of imbalanced processes arrival times. High performance collective communications are crucial for the performance and scalability of applications, and imbalanced process arrival times are common in these applications. A micro-benchmark is used to investigate the nature of process imbalance with perfectly balanced workloads, and understand the nature of inter- versus intra-node imbalance. These insights are then used to develop imbalance tolerant reduction, broadcast, and alltoall algorithms, which minimize the synchronization delay observed by early arriving processes. These algorithms have been implemented and tested on a Cray XE6 using up to 32k cores with varying buffer sizes and levels of imbalance. Results show speedups over MPICH averaging 18.9x for reduce, 5.3x for broadcast, and 6.9x for alltoall in the presence of high, but not unreasonable, imbalance

    Parallel Computational Steering and Analysis for HPC Applications using a ParaView Interface and the HDF5 DSM Virtual File Driver

    Get PDF
    Honourable Mention AwardInternational audienceWe present a framework for interfacing an arbitrary HPC simulation code with an interactive ParaView session using the HDF5 parallel IO library as the API. The implementation allows a flexible combination of parallel simulation, concurrent parallel analysis and GUI client, all of which may be on the same or separate machines. Data transfer between the simulation and the ParaView server takes place using a virtual file driver for HDF5 that bypasses the disk entirely and instead communicates directly between the coupled applications in parallel. The simulation and ParaView tasks run as separate MPI jobs and may therefore use different core counts and/or hardware configurations/platforms, making it possible to carefully tailor the amount of resources dedicated to each part of the workload. The coupled applications write and read datasets to the shared virtual HDF5 file layer, which allows the user to read data representing any aspect of the simulation and modify it using ParaView pipelines, then write it back, to be reread by the simulation (or vice versa). This allows not only simple parameter changes, but complete remeshing of grids, or operations involving regeneration of field values over the entire domain, to be carried out. To avoid the problem of manually customizing the GUI for each application that is to be steered, we make use of XML templates that describe outputs from the simulation, inputs back to it, and what user interactions are permitted on the controlled elements. This XML is used to generate GUI and 3D controls for manipulation of the simulation without requiring explicit knowledge of the underlying model

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms
    • …
    corecore