257 research outputs found

    Effective and Efficient Communication and Collaboration in Participatory Environments

    Get PDF
    Participatory environments pose significant challenges to deploying real applications. This dissertation investigates exploitation of opportunistic contacts to enable effective and efficient data transfers in challenged participatory environments. There are three main contributions in this dissertation: 1. A novel scheme for predicting contact volume during an opportunistic contact (PCV); 2. A method for computing paths with combined optimal stability and capacity (COSC) in opportunistic networks; and 3. An algorithm for mobility and orientation estimation in mobile environments (MOEME). The proposed novel scheme called PCV predicts contact volume in soft real-time. The scheme employs initial position and velocity vectors of nodes along with the data rate profile of the environment. PCV enables efficient and reliable data transfers between opportunistically meeting nodes. The scheme that exploits capacity and path stability of opportunistic networks is based on PCV for estimating individual link costs on a path. The total path cost is merged with a stability cost to strike a tradeoff for maximizing data transfers in the entire participatory environment. A polynomial time dynamic programming algorithm is proposed to compute paths of optimum cost. We propose another novel scheme for Real-time Mobility and Orientation Estimation for Mobile Environments (MOEME), as prediction of user movement paves way for efficient data transfers, resource allocation and event scheduling in participatory environments. MOEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MOEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. Indeed, accurate prediction of contact volume, path capacity and stability and user movement can improve performance of deployments. However, existing schemes for such estimations make use of preconceived patterns or contact time distributions that may not be applicable in uncertain environments. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets

    Evaluating Mobility Predictors in Wireless Networks for Improving Handoff and Opportunistic Routing

    Get PDF
    We evaluate mobility predictors in wireless networks. Handoff prediction in wireless networks has long been considered as a mechanism to improve the quality of service provided to mobile wireless users. Most prior studies, however, were based on theoretical analysis, simulation with synthetic mobility models, or small wireless network traces. We study the effect of mobility prediction for a large realistic wireless situation. We tackle the problem by using traces collected from a large production wireless network to evaluate several major families of handoff-location prediction techniques, a set of handoff-time predictors, and a predictor that jointly predicts handoff location and time. We also propose a fallback mechanism, which uses a lower-order predictor whenever a higher-order predictor fails to predict. We found that low-order Markov predictors, with our proposed fallback mechanisms, performed as well or better than the more complex and more space-consuming compression-based handoff-location predictors. Although our handoff-time predictor had modest prediction accuracy, in the context of mobile voice applications we found that bandwidth reservation strategies can benefit from the combined location and time handoff predictor, significantly reducing the call-drop rate without significantly increasing the call-block rate. We also developed a prediction-based routing protocol for mobile opportunistic networks. We evaluated and compared our protocol\u27s performance to five existing routing protocols, using simulations driven by real mobility traces. We found that the basic routing protocols are not practical for large-scale opportunistic networks. Prediction-based routing protocols trade off the message delivery ratio against resource usage and performed well and comparable to each other

    Energy-Efficient Opportunistic Transmission Scheduling for Sparse Sensor Networks with Mobile Relays

    Get PDF
    Wireless sensing devices have been widely used in civilian and military applications over the past decade. In some application scenarios, the sensors are sparsely deployed in the field and are costly or infeasible to have stable communication links for delivering the collected data to the destined server. A possible solution is to utilize the motion of entities that are already present in the environment to provide opportunistic relaying services for sensory data. In this paper, we design and propose a new scheduling scheme that opportunistically schedules data transmissions based on the optimal stopping theory, with a view of minimizing the energy consumption on network probes for data delivery. In fact, by exploiting the stochastic characteristics of the relay motion, we can postpone the communication up to an acceptable time deadline until the best relay is found. Simulation results validate the effectiveness of the derived optimal strategy

    Location Privacy for Mobile Crowd Sensing through Population Mapping

    Get PDF
    Opportunistic sensing allows applications to “task” mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street or users\u27 mobile phones to locate (Bluetooth-enabled) objects in their vicinity. In most proposed applications, context reports include the time and location of the event, putting the privacy of users at increased risk: even if identifying information has been removed from a report, the accompanying time and location can reveal sufficient information to de-anonymize the user whose device sent the report. We propose and evaluate a novel spatiotemporal blurring mechanism based on tessellation and clustering to protect users\u27 privacy against the system while reporting context. Our technique employs a notion of probabilistic k-anonymity; it allows users to perform local blurring of reports efficiently without an online anonymization server before the data are sent to the system. The proposed scheme can control the degree of certainty in location privacy and the quality of reports through a system parameter. We outline the architecture and security properties of our approach and evaluate our tessellation and clustering algorithm against real mobility traces

    D2D-Assisted Mobile Edge Computing: Optimal Scheduling under Uncertain Processing Cycles and Intermittent Communications

    Full text link
    Mobile edge computing (MEC) has been regarded as a promising approach to deal with explosive computation requirements by enabling cloud computing capabilities at the edge of networks. Existing models of MEC impose some strong assumptions on the known processing cycles and unintermittent communications. However, practical MEC systems are constrained by various uncertainties and intermittent communications, rendering these assumptions impractical. In view of this, we investigate how to schedule task offloading in MEC systems with uncertainties. First, we derive a closed-form expression of the average offloading success probability in a device-to-device (D2D) assisted MEC system with uncertain computation processing cycles and intermittent communications. Then, we formulate a task offloading maximization problem (TOMP), and prove that the problem is NP-hard. For problem solving, if the problem instance exhibits a symmetric structure, we propose a task scheduling algorithm based on dynamic programming (TSDP). By solving this problem instance, we derive a bound to benchmark sub-optimal algorithm. For general scenarios, by reformulating the problem, we propose a repeated matching algorithm (RMA). Finally, in performance evaluations, we validate the accuracy of the closed-form expression of the average offloading success probability by Monte Carlo simulations, as well as the effectiveness of the proposed algorithms

    Resource Efficient Urban Delay/disruptive Tolerant Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore