35,168 research outputs found

    Mining for Social Serendipity

    Get PDF
    A common social problem at an event in which people do not personally know all of the other participants is the natural tendency for cliques to form and for discussions to mainly happen between people who already know each other. This limits the possibility for people to make interesting new acquaintances and acts as a retarding force in the creation of new links in the social web. Encouraging users to socialize with people they don't know by revealing to them hidden surprising links could help to improve the diversity of interactions at an event. The goal of this paper is to propose a method for detecting "surprising" relationships between people attending an event. By "surprising" relationship we mean those relationships that are not known a priori, and that imply shared information not directly related with the local context of the event (location, interests, contacts) at which the meeting takes place. To demonstrate and test our concept we used the Flickr community. We focused on a community of users associated with a social event (a computer science conference) and represented in Flickr by means of a photo pool devoted to the event. We use Flickr metadata (tags) to mine for user similarity not related to the context of the event, as represented in the corresponding Flickr group. For example, we look for two group members who have been in the same highly specific place (identified by means of geo-tagged photos), but are not friends of each other and share no other common interests or, social neighborhood

    Social networks and performance in distributed learning communities

    Get PDF
    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this study we analyse two distributed learning communities' social networks in order to understand how characteristics of the social structure can enhance students' success and performance. We used a monitoring system for social network data gathering. Results from correlation analyses showed that students' social network characteristics are related to their performancePostprint (published version

    Deep Item-based Collaborative Filtering for Top-N Recommendation

    Full text link
    Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI
    corecore