23,381 research outputs found

    Analysis of the human diseasome reveals phenotype modules across common, genetic, and infectious diseases

    Get PDF
    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text- mining approach to identify the phenotypes (signs and symptoms) associated with over 8,000 diseases. We demonstrate that our method generates phenotypes that correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that share signs and symptoms cluster together, and we use this network to identify phenotypic disease modules

    Big Data Transforms Discovery-Utilization Therapeutics Continuum.

    Get PDF
    Enabling omic technologies adopt a holistic view to produce unprecedented insights into the molecular underpinnings of health and disease, in part, by generating massive high-dimensional biological data. Leveraging these systems-level insights as an engine driving the healthcare evolution is maximized through integration with medical, demographic, and environmental datasets from individuals to populations. Big data analytics has accordingly emerged to add value to the technical aspects of storage, transfer, and analysis required for merging vast arrays of omic-, clinical-, and eco-datasets. In turn, this new field at the interface of biology, medicine, and information science is systematically transforming modern therapeutics across discovery, development, regulation, and utilization

    Tracking Dengue Epidemics using Twitter Content Classification and Topic Modelling

    Full text link
    Detecting and preventing outbreaks of mosquito-borne diseases such as Dengue and Zika in Brasil and other tropical regions has long been a priority for governments in affected areas. Streaming social media content, such as Twitter, is increasingly being used for health vigilance applications such as flu detection. However, previous work has not addressed the complexity of drastic seasonal changes on Twitter content across multiple epidemic outbreaks. In order to address this gap, this paper contrasts two complementary approaches to detecting Twitter content that is relevant for Dengue outbreak detection, namely supervised classification and unsupervised clustering using topic modelling. Each approach has benefits and shortcomings. Our classifier achieves a prediction accuracy of about 80\% based on a small training set of about 1,000 instances, but the need for manual annotation makes it hard to track seasonal changes in the nature of the epidemics, such as the emergence of new types of virus in certain geographical locations. In contrast, LDA-based topic modelling scales well, generating cohesive and well-separated clusters from larger samples. While clusters can be easily re-generated following changes in epidemics, however, this approach makes it hard to clearly segregate relevant tweets into well-defined clusters.Comment: Procs. SoWeMine - co-located with ICWE 2016. 2016, Lugano, Switzerlan

    Collaborative development of the Arrowsmith two node search interface designed for laboratory investigators.

    Get PDF
    Arrowsmith is a unique computer-assisted strategy designed to assist investigators in detecting biologically-relevant connections between two disparate sets of articles in Medline. This paper describes how an inter-institutional consortium of neuroscientists used the UIC Arrowsmith web interface http://arrowsmith.psych.uic.edu in their daily work and guided the development, refinement and expansion of the system into a suite of tools intended for use by the wider scientific community

    Annotating patient clinical records with syntactic chunks and named entities: the Harvey corpus

    Get PDF
    The free text notes typed by physicians during patient consultations contain valuable information for the study of disease and treatment. These notes are difficult to process by existing natural language analysis tools since they are highly telegraphic (omitting many words), and contain many spelling mistakes, inconsistencies in punctuation, and non-standard word order. To support information extraction and classification tasks over such text, we describe a de-identified corpus of free text notes, a shallow syntactic and named entity annotation scheme for this kind of text, and an approach to training domain specialists with no linguistic background to annotate the text. Finally, we present a statistical chunking system for such clinical text with a stable learning rate and good accuracy, indicating that the manual annotation is consistent and that the annotation scheme is tractable for machine learning

    A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.

    Get PDF
    BACKGROUND: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization. RESULTS: We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. CONCLUSION: We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2105-15-315) contains supplementary material, which is available to authorized users
    • …
    corecore