35 research outputs found

    Revealing Invisible Photonic Inscriptions: Images from Strain.

    Get PDF
    Photonic structural materials have received intensive interest and have been strongly developed over the past few years for image displays, sensing, and anticounterfeit materials. Their "smartness" arises from their color responsivity to changes of environment, strain, or external fields. Here, we introduce a novel invisible photonic system that reveals encrypted images or characters by simply stretching, or immersing in solvents. This type of intriguing photonic material is composed of regularly arranged core-shell particles that are selectively cross-linked by UV irradiation, giving different strain response compared to un-cross-linked regions. The images reversibly appear and disappear when cycling the strain and releasing it. The unique advantages of this soft polymer opal system compared with other types of photonic gels are that it can be produced in roll to roll quantities, can be vigorously deformed to achieve strong color changes, and has no solvent evaporation issues because it is a photonic rubber system. We demonstrate potential applications together with a fabrication procedure which is straightforward and scalable, vital for user take-up. Our work deepens understanding of this rubbery photonic system based on core-shell nanospheres.We acknowledge financial support from EPSRC grant EP/G060649/1, EP/I012060/1, EP/J007552/1, ERC grant LINASS 320503, EMATTER 280078.This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/acsami.5b02768

    High speed e-beam writing for large area photonic nanostructures-a choice of parameters

    Get PDF
    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications

    Sonic and Photonic Crystals

    Get PDF
    Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue

    Joint Actions on Climate Change:Conference Proceedings

    Get PDF
    corecore