8,292 research outputs found

    CLPL: Providing software infrastructure for the systematic and effective construction of complex collaborative learning systems

    Get PDF
    Over the last decade, e-Learning and in particular Computer-Supported Collaborative Learning (CSCL) needs have been evolving accordingly with more and more demanding pedagogical and technological requirements. As a result, high customization and flexibility are a must in this context, meaning that collaborative learning practices need to be continuously adapted, adjusted, and personalized to each specific target learning group. These very demanding needs of the CSCL domain represent a great challenge for the research community on software development to satisfy. This contribution presents and evaluates a previous research effort in the form of a generic software infrastructure called Collaborative Learning Purpose Library (CLPL) with the aim of meeting the current and demanding needs found in the CSCL domain. To this end, we experiment with the CLPL in order to offer an advanced reuse-based service-oriented software engineering methodology for developing CSCL applications in an effective and timely fashion. A validation process is provided by reporting on the use of the CLPL platform as the primary resource for the Master's thesis courses at the Open University of Catalonia when developing complex software applications in the CSCL domain. The ultimate aim of the whole research is to yield effective CSCL software systems capable of supporting and enhancing the current on-line collaborative learning practices.Peer ReviewedPostprint (author's final draft

    Distributed simulation and industry: Potentials and pitfalls

    Get PDF
    We present the views of five researchers and practitioners of distributed simulation. Collectively we attempt to address what the implications of distributed simulation are for industry. It is hoped that the views contained herein, and the presentations made by the panelists at the 2002 Winter Simulation Conference will raise awareness and stimulate further discussion on the application of distributed simulation methods and technology in an area that is yet to benefit from the arguable economic benefits that this technique promises

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    IMPLEMENTATION OF A LOCALIZATION-ORIENTED HRI FOR WALKING ROBOTS IN THE ROBOCUP ENVIRONMENT

    Get PDF
    This paper presents the design and implementation of a human–robot interface capable of evaluating robot localization performance and maintaining full control of robot behaviors in the RoboCup domain. The system consists of legged robots, behavior modules, an overhead visual tracking system, and a graphic user interface. A human–robot communication framework is designed for executing cooperative and competitive processing tasks between users and robots by using object oriented and modularized software architecture, operability, and functionality. Some experimental results are presented to show the performance of the proposed system based on simulated and real-time information. </jats:p

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201
    • …
    corecore