683 research outputs found

    Adaptive System Identification using Markov Chain Monte Carlo

    Full text link
    One of the major problems in adaptive filtering is the problem of system identification. It has been studied extensively due to its immense practical importance in a variety of fields. The underlying goal is to identify the impulse response of an unknown system. This is accomplished by placing a known system in parallel and feeding both systems with the same input. Due to initial disparity in their impulse responses, an error is generated between their outputs. This error is set to tune the impulse response of known system in a way that every change in impulse response reduces the magnitude of prospective error. This process is repeated until the error becomes negligible and the responses of both systems match. To specifically minimize the error, numerous adaptive algorithms are available. They are noteworthy either for their low computational complexity or high convergence speed. Recently, a method, known as Markov Chain Monte Carlo (MCMC), has gained much attention due to its remarkably low computational complexity. But despite this colossal advantage, properties of MCMC method have not been investigated for adaptive system identification problem. This article bridges this gap by providing a complete treatment of MCMC method in the aforementioned context

    ํฐ ๊ทธ๋ž˜ํ”„ ์ƒ์—์„œ์˜ ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€ ๋žญํฌ์— ๋Œ€ํ•œ ๋น ๋ฅธ ๊ณ„์‚ฐ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ด์ƒ๊ตฌ.Computation of Personalized PageRank (PPR) in graphs is an important function that is widely utilized in myriad application domains such as search, recommendation, and knowledge discovery. Because the computation of PPR is an expensive process, a good number of innovative and efficient algorithms for computing PPR have been developed. However, efficient computation of PPR within very large graphs with over millions of nodes is still an open problem. Moreover, previously proposed algorithms cannot handle updates efficiently, thus, severely limiting their capability of handling dynamic graphs. In this paper, we present a fast converging algorithm that guarantees high and controlled precision. We improve the convergence rate of traditional Power Iteration method by adopting successive over-relaxation, and initial guess revision, a vector reuse strategy. The proposed method vastly improves on the traditional Power Iteration in terms of convergence rate and computation time, while retaining its simplicity and strictness. Since it can reuse the previously computed vectors for refreshing PPR vectors, its update performance is also greatly enhanced. Also, since the algorithm halts as soon as it reaches a given error threshold, we can flexibly control the trade-off between accuracy and time, a feature lacking in both sampling-based approximation methods and fully exact methods. Experiments show that the proposed algorithm is at least 20 times faster than the Power Iteration and outperforms other state-of-the-art algorithms.๊ทธ๋ž˜ํ”„ ๋‚ด์—์„œ ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€๋žญํฌ (P ersonalized P age R ank, PPR ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์€ ๊ฒ€์ƒ‰ , ์ถ”์ฒœ , ์ง€์‹๋ฐœ๊ฒฌ ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™œ์šฉ๋˜๋Š” ์ค‘์š”ํ•œ ์ž‘์—… ์ด๋‹ค . ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€๋žญํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์€ ๊ณ ๋น„์šฉ์˜ ๊ณผ์ •์ด ํ•„์š”ํ•˜๋ฏ€๋กœ , ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€๋žญํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ํšจ์œจ์ ์ด๊ณ  ํ˜์‹ ์ ์ธ ๋ฐฉ๋ฒ•๋“ค์ด ๋‹ค์ˆ˜ ๊ฐœ๋ฐœ๋˜์–ด์™”๋‹ค . ๊ทธ๋Ÿฌ๋‚˜ ์ˆ˜๋ฐฑ๋งŒ ์ด์ƒ์˜ ๋…ธ๋“œ๋ฅผ ๊ฐ€์ง„ ๋Œ€์šฉ๋Ÿ‰ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๊ณ„์‚ฐ์€ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์€ ๋ฌธ์ œ์ด๋‹ค . ๊ทธ์— ๋”ํ•˜์—ฌ , ๊ธฐ์กด ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ๋“ฌ๋“ค์€ ๊ทธ๋ž˜ํ”„ ๊ฐฑ์‹ ์„ ํšจ์œจ์ ์œผ๋กœ ๋‹ค๋ฃจ์ง€ ๋ชปํ•˜์—ฌ ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐ์— ํ•œ๊ณ„์ ์ด ํฌ๋‹ค . ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋†’์€ ์ •๋ฐ€๋„๋ฅผ ๋ณด์žฅํ•˜๊ณ  ์ •๋ฐ€๋„๋ฅผ ํ†ต์ œ ๊ฐ€๋Šฅํ•œ , ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•˜๋Š” ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€๋žญํฌ ๊ณ„์‚ฐ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ œ์‹œํ•œ๋‹ค . ์ „ํ†ต์ ์ธ ๊ฑฐ๋“ญ์ œ๊ณฑ๋ฒ• (Power ์— ์ถ•์ฐจ๊ฐ€์†์™„ํ™”๋ฒ• (Successive Over Relaxation) ๊ณผ ์ดˆ๊ธฐ ์ถ”์ธก ๊ฐ’ ๋ณด์ •๋ฒ• (Initial Guess ์„ ํ™œ์šฉํ•œ ๋ฒกํ„ฐ ์žฌ์‚ฌ์šฉ ์ „๋žต์„ ์ ์šฉํ•˜์—ฌ ์ˆ˜๋ ด ์†๋„๋ฅผ ๊ฐœ์„ ํ•˜์˜€๋‹ค . ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด ๊ฑฐ๋“ญ์ œ๊ณฑ๋ฒ•์˜ ์žฅ์ ์ธ ๋‹จ์ˆœ์„ฑ๊ณผ ์—„๋ฐ€์„ฑ์„ ์œ ์ง€ ํ•˜๋ฉด์„œ ๋„ ์ˆ˜๋ ด์œจ๊ณผ ๊ณ„์‚ฐ์†๋„๋ฅผ ํฌ๊ฒŒ ๊ฐœ์„  ํ•œ๋‹ค . ๋˜ํ•œ ๊ฐœ์ธํ™”๋œ ํŽ˜์ด์ง€๋žญํฌ ๋ฒกํ„ฐ์˜ ๊ฐฑ์‹ ์„ ์œ„ํ•˜์—ฌ ์ด์ „์— ๊ณ„์‚ฐ ๋˜์–ด ์ €์žฅ๋œ ๋ฒกํ„ฐ๋ฅผ ์žฌ์‚ฌ์šฉํ•˜ ์—ฌ , ๊ฐฑ์‹  ์— ๋“œ๋Š” ์‹œ๊ฐ„์ด ํฌ๊ฒŒ ๋‹จ์ถ•๋œ๋‹ค . ๋ณธ ๋ฐฉ๋ฒ•์€ ์ฃผ์–ด์ง„ ์˜ค์ฐจ ํ•œ๊ณ„์— ๋„๋‹ฌํ•˜๋Š” ์ฆ‰์‹œ ๊ฒฐ๊ณผ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋ฏ€๋กœ ์ •ํ™•๋„์™€ ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ์œ ์—ฐํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋Š” ํ‘œ๋ณธ ๊ธฐ๋ฐ˜ ์ถ”์ •๋ฐฉ๋ฒ•์ด๋‚˜ ์ •ํ™•ํ•œ ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋Š” ์—ญํ–‰๋ ฌ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ• ์ด ๊ฐ€์ง€์ง€ ๋ชปํ•œ ํŠน์„ฑ์ด๋‹ค . ์‹คํ—˜ ๊ฒฐ๊ณผ , ๋ณธ ๋ฐฉ๋ฒ•์€ ๊ฑฐ๋“ญ์ œ๊ณฑ๋ฒ•์— ๋น„ํ•˜์—ฌ 20 ๋ฐฐ ์ด์ƒ ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•œ๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ , ๊ธฐ ์ œ์‹œ๋œ ์ตœ๊ณ  ์„ฑ๋Šฅ ์˜ ์•Œ๊ณ ๋ฆฌ ๋“ฌ ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ ๋˜ํ•œ ํ™•์ธ๋˜์—ˆ๋‹ค1 Introduction 1 2 Preliminaries: Personalized PageRank 4 2.1 Random Walk, PageRank, and Personalized PageRank. 5 2.1.1 Basics on Random Walk 5 2.1.2 PageRank. 6 2.1.3 Personalized PageRank 8 2.2 Characteristics of Personalized PageRank. 9 2.3 Applications of Personalized PageRank. 12 2.4 Previous Work on Personalized PageRank Computation. 17 2.4.1 Basic Algorithms 17 2.4.2 Enhanced Power Iteration 18 2.4.3 Bookmark Coloring Algorithm. 20 2.4.4 Dynamic Programming 21 2.4.5 Monte-Carlo Sampling. 22 2.4.6 Enhanced Direct Solving 24 2.5 Summary 26 3 Personalized PageRank Computation with Initial Guess Revision 30 3.1 Initial Guess Revision and Relaxation 30 3.2 Finding Optimal Weight of Successive Over Relaxation for PPR. 34 3.3 Initial Guess Construction Algorithm for Personalized PageRank. 36 4 Fully Personalized PageRank Algorithm with Initial Guess Revision 42 4.1 FPPR with IGR. 42 4.2 Optimization. 49 4.3 Experiments. 52 5 Personalized PageRank Query Processing with Initial Guess Revision 56 5.1 PPR Query Processing with IGR 56 5.2 Optimization. 64 5.3 Experiments. 67 6 Conclusion 74 Bibliography 77 Appendix 88 Abstract (In Korean) 90Docto

    Predictability of Equity Models

    Get PDF
    In this study, we verify the existence of predictability in the Brazilian equity market. Unlike other studies in the same sense, which evaluate original series for each stock, we evaluate synthetic series created on the basis of linear models of stocks. Following Burgess (1999), we use the โ€œstepwise regressionโ€ model for the formation of models of each stock. We then use the variance ratio profile together with a Monte Carlo simulation for the selection of models with potential predictability. Unlike Burgess (1999), we carry out Whiteโ€™s Reality Check (2000) in order to verify the existence of positive returns for the period outside the sample. We use the strategies proposed by Sullivan, Timmermann & White (1999) and Hsu & Kuan (2005) amounting to 26,410 simulated strategies. Finally, using the bootstrap methodology, with 1,000 simulations, we find strong evidence of predictability in the models, including transaction costspredictability, variance ratio profile, Monte Carlo simulation, reality check, bootstrap, technical analysis

    Practical Volume Estimation by a New Annealing Schedule for Cooling Convex Bodies

    Full text link
    We study the problem of estimating the volume of convex polytopes, focusing on H- and V-polytopes, as well as zonotopes. Although a lot of effort is devoted to practical algorithms for H-polytopes there is no such method for the latter two representations. We propose a new, practical algorithm for all representations, which is faster than existing methods. It relies on Hit-and-Run sampling, and combines a new simulated annealing method with the Multiphase Monte Carlo (MMC) approach. Our method introduces the following key features to make it adaptive: (a) It defines a sequence of convex bodies in MMC by introducing a new annealing schedule, whose length is shorter than in previous methods with high probability, and the need of computing an enclosing and an inscribed ball is removed; (b) It exploits statistical properties in rejection-sampling and proposes a better empirical convergence criterion for specifying each step; (c) For zonotopes, it may use a sequence of convex bodies for MMC different than balls, where the chosen body adapts to the input. We offer an open-source, optimized C++ implementation, and analyze its performance to show that it outperforms state-of-the-art software for H-polytopes by Cousins-Vempala (2016) and Emiris-Fisikopoulos (2018), while it undertakes volume computations that were intractable until now, as it is the first polynomial-time, practical method for V-polytopes and zonotopes that scales to high dimensions (currently 100). We further focus on zonotopes, and characterize them by their order (number of generators over dimension), because this largely determines sampling complexity. We analyze a related application, where we evaluate methods of zonotope approximation in engineering.Comment: 20 pages, 12 figures, 3 table

    vSMC: Parallel Sequential Monte Carlo in C++

    Get PDF
    Sequential Monte Carlo is a family of algorithms for sampling from a sequence of distributions. Some of these algorithms, such as particle filters, are widely used in physics and signal processing research. More recent developments have established their application in more general inference problems such as Bayesian modeling. These algorithms have attracted considerable attention in recent years not only be- cause that they have desired statistical properties, but also because they admit natural and scalable parallelization. However, they are perceived to be difficult to implement. In addition, parallel programming is often unfamiliar to many researchers though conceptually appealing. A C++ template library is presented for the purpose of implementing generic sequential Monte Carlo algorithms on parallel hardware. Two examples are presented: a simple particle filter and a classic Bayesian modeling problem

    Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations

    Get PDF
    Linear algebra operations play an important role in scientific computing and data analysis. With increasing data volume and complexity in the Big Data era, linear algebra operations are important tools to process massive datasets. On one hand, the advent of modern high-performance computing architectures with increasing computing power has greatly enhanced our capability to deal with a large volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms have difficulty to scale to handle large data sets. Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, including solving large-scale linear systems, constructing low-rank matrix approximation, and approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive the necessary and sufficient condition for its convergence. To support a broad family of linear systems, we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually depending on the number of independent vectors in the block. Correspondingly, we develop a sliding window power method to find stationary distribution, which has demonstrated success in modeling stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of Freivaldsโ€™ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding undetectable fault patterns encountered in deterministic algorithms

    Kernel Sequential Monte Carlo

    Get PDF
    We propose kernel sequential Monte Carlo (KSMC), a framework for sampling from static target densities. KSMC is a family of sequential Monte Carlo algorithms that are based on building emulator models of the current particle system in a reproducing kernel Hilbert space. We here focus on modelling nonlinear covariance structure and gradients of the target. The emulatorโ€™s geometry is adaptively updated and subsequently used to inform local proposals. Unlike in adaptive Markov chain Monte Carlo, continuous adaptation does not compromise convergence of the sampler. KSMC combines the strengths of sequental Monte Carlo and kernel methods: superior performance for multimodal targets and the ability to estimate model evidence as compared to Markov chain Monte Carlo, and the emulatorโ€™s ability to represent targets that exhibit high degrees of nonlinearity. As KSMC does not require access to target gradients, it is particularly applicable on targets whose gradients are unknown or prohibitively expensive. We describe necessary tuning details and demonstrate the benefits of the the proposed methodology on a series of challenging synthetic and real-world examples
    • โ€ฆ
    corecore