443 research outputs found

    Directed Test Suite Augmentation

    Get PDF
    Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those elements. Whereas methods and techniques to find affected elements have been extensively researched in regression testing, how to generate new test cases to cover these elements cost-effectively has rarely been studied. It is known that generating test cases is very expensive, so we want to focus on this second step. We believe that reusing existing test cases will help us achieve this task. This research intends to provide a framework for test suite augmentation techniques that will reuse existing test cases to automatically generate new test cases to cover as many affected elements as possible cost-effectively

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Knowledge management in sustainable supply chain management: improving performance through an interpretive structural modelling approach

    Get PDF
    Sustainable supply chain management is one vital element in achieving competitive advantage in business management and knowledge management is seen to be one key enabler. However, in previous studies the interrelationships between knowledge management and sustainable supply chain management are still under-explored. This study proposes a set of measures and interpretive structural modelling methods to identify the driving and dependence powers in sustainable supply chain management within the context of knowledge management, so as to improve the performance of firms from the textile industry in Vietnam. The research result indicated that learning organisation, information/knowledge sharing, joint knowledge creation, information technology and knowledge storage are amongst the highest driving and dependence powers. These attributes are deemed to be most-effective to enhance the performance of firms. To further enhance the value of this research, theoretical and managerial implications are also discussed in this study

    A Search Engine for Finding and Reusing Architecturally Significant Code

    Get PDF
    Architectural tactics are the building blocks of software architecture. They describe solutions for addressing specific quality concerns, and are prevalent across many software systems. Once a decision is made to utilize a tactic, the developer must generate a concrete plan for implementing the tactic in the code. Unfortunately, this is a non-trivial task even for experienced developers. Developers often resort to using search engines, crowd-sourcing websites, or discussion forums to find sample code snippets to implement a tactic. A fundamental problem of finding implementation for architectural patterns/tactics is the mismatch between the high-level intent reflected in the descriptions of these patterns ,and low-level implementation details of them. To reduce this mismatch, we created a novel Tactic Search Engine called ArchEngine (ARCHitecture search ENGINE). ArchEngine can replace this manual Internet-based search process and help developers to reuse proper architectural knowledge and accurately implement tactics and patterns from a wide range of open source systems. ArchEngine helps developers find implementation examples of tactic for a given technical context. It uses information retrieval and program analysis techniques to retrieve applications that implement these design concepts. Furthermore, the search engine lists the code snippets where the patterns/tactics are located. Our case study with 21 professional software developers shows that ArchEngine is more effective than other search engines (e.g. SourceForge and Koders) in helping programmers to quickly find implementations of architectural tactics/patterns

    Sound and Precise Analysis of Multithreaded Programs through Schedule Specialization and Execution Filters

    Get PDF
    Multithreaded programs are known to be difficult to analyze. A key reason is that they typically have an enormous number of execution interleavings, or schedules. Static analysis with respect to all schedules requires over-approximation, resulting in poor precision; dynamic analysis rarely covers more than a tiny fraction of all schedules, so its result may not hold for schedules not covered. To address this challenge, we propose a novel approach called schedule specialization that restricts the schedules of a program to make it easier to analyze. Schedule specialization combines static and dynamic analysis. It first statically analyzes a multithreaded program with respect to a small set of schedules for precision, and then enforces these schedules at runtime for soundness of the static analysis results. To demonstrate that this approach works, we build three systems. The first system is a specialization framework that specializes a program into a simpler program based on a schedule for precision. It allows stock analyses to automatically gain precision with only little modification. The second system is Peregrine, a deterministic multithreading system that collects and enforces schedules on future inputs. Peregrine reuses a small set of schedules on many inputs, ensuring our static analysis results to be sound for a wide range of inputs. It also enforces these schedules efficiently, making schedule specialization suitable for production usage. Although schedule specialization can make static concurrency error detection more precise, some concurrency errors such as races may still slip detection and enter production systems. To mitigate this limitation, we build Loom, a live-workaround system that protects a live multithreaded program from races that slip detection. It allows developers to easily write execution filters to safely and efficiently work around deployed races in live multithreaded programs without restarting them
    • …
    corecore