1,046 research outputs found

    A Tractable Approach to Coverage and Rate in Cellular Networks

    Full text link
    Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.Comment: Submitted to IEEE Transactions on Communication

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Data Chunking in Quasi-Synchronous DS-CDMA

    Get PDF
    DS-CDMA is a popular multiple access technique used in many mobile networks to efficiently share channel resources between users in a cell. Synchronization between users maximizes the user capacity of these systems. However, it is difficult to perfectly synchronize users in the reverse link due to the geographic diversity of mobile users in the cell. As a result, most commercial DS-CDMA networks utilize an asynchronous reverse link resulting in a reduced user capacity. A possible compromise to increase the user capacity in the reverse link is to implement a quasi-synchronous timing scheme, a timing scheme in which users are allowed to be slightly out of synchronization. This paper suggests a possible way to implement a quasi-synchronous DS-CDMA reverse link using the method of “data chunking”. The basic premise is derived by making a link between TDMA and synchronous DS-CDMA. By considering some basic TDMA limitations, a proposed “data chunked” quasi-synchronous DS-CDMA system is derived from a TDMA system. The effects of such a system are compared to those of a chip interleaved system. MATLAB simulations are performed to analyze the performance of the system in the presence of small synchronization errors between users. Implementation of guard bands is explored to further reduce errors due to imperfect synchronization between users

    Performance Studies of Multimedia Traffic in CDMA Cellular Network

    Get PDF
    The current generation of wireless cellular network is mostly used for voice communication. Although data services such as short message services (SMS) are available, voice communication still takes precedence. However, in the near future, it is anticipated that wireless communication is expected to handle multimedia traffic that is currently available on land networks. Multimedia traffic includes video services such as real time video and audio, voice services and data services similar to the ones available in the Internet. The cellular network carrying multimedia traffic is analysed in a single cell where Code Division Multiple Access (CDMA) protocol is used for users to access the network simultaneously. The study is analysed for the reverse link communication, i. e., communication between the user and the base station. CDMA is used because of its merits in minimising the effect of interference, increasing cell capacity and high security features compared to other access technologies. The model inputs include co- channel interference, signal to noise ratio, bit error rate requirements, number of users, the channel access priority and threshold. Suitable assumptions to enable simulation are made. The model is simulated to see the impact of complementing data traffic along with voice and video traffic. The model is also simulated for synchronous transmission and asynchronous transmission of packets. The results shows that data traffic can be successfully complemented along with voice and video traffic without significantly degrading voice and video delay. Data traffic can tolerate delay but is loss sensitive. Data traffic delay can be used without suffering any loss, even by reducing the data access priority. The model also compared the effects of synchronous and asynchronous transmission. Synchronous transmission indicated an overhead in packet delay compared to asynchronous transmission. It is concluded from the work that voice, video and data traffic can be served in a cell simultaneously with asynchronous transmission. A higher bandwidth can assure a higher number of multimedia users in a asynchronous CDMA cellular network. The model will serve as a useful design tool

    MSAT-X: A technical introduction and status report

    Get PDF
    A technical introduction and status report for the Mobile Satellite Experiment (MSAT-X) program is presented. The concepts of a Mobile Satellite System (MSS) and its unique challenges are introduced. MSAT-X's role and objectives are delineated with focus on its achievements. An outline of MSS design philosophy is followed by a presentation and analysis of the MSAT-X results, which are cast in a broader context of an MSS. The current phase of MSAT-X has focused notably on the ground segment of MSS. The accomplishments in the four critical technology areas of vehicle antennas, modem and mobile terminal design, speech coding, and networking are presented. A concise evolutionary trace is incorporated in each area to elucidate the rationale leading to the current design choices. The findings in the area of propagation channel modeling are also summarized and their impact on system design discussed. To facilitate the assessment of the MSAT-X results, technology and subsystem recommendations are also included and integrated with a quantitative first-generation MSS design

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    Get PDF
    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    corecore