25,223 research outputs found

    Design reuse research : a computational perspective

    Get PDF
    This paper gives an overview of some computer based systems that focus on supporting engineering design reuse. Design reuse is considered here to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. A design reuse process model, containing three main processes and six knowledge components, is used as a basis to identify the main areas of contribution from the systems. From this it can be concluded that while reuse libraries and design by reuse has received most attention, design for reuse, domain exploration and five of the other knowledge components lack research effort

    Towards automated support for extraction of reusable components

    Get PDF
    A cost effective introduction of software reuse techniques requires the reuse of existing software developed in many cases without aiming at reusability. This paper discusses the problems related to the analysis and reengineering of existing software in order to reuse it. We introduce a process model for component extraction and focus on the problem of analyzing and qualifying software components which are candidates for reuse. A prototype tool for supporting the extraction of reusable components is presented. One of the components of this tool aids in understanding programs and is based on the functional model of correctness. It can assist software engineers in the process of finding correct formal specifications for programs. A detailed description of this component and an example to demonstrate a possible operational scenario are given

    Neural network-based retrieval from software reuse repositories

    Get PDF
    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary

    Modal logics for reasoning about object-based component composition

    Get PDF
    Component-oriented development of software supports the adaptability and maintainability of large systems, in particular if requirements change over time and parts of a system have to be modified or replaced. The software architecture in such systems can be described by components and their composition. In order to describe larger architectures, the composition concept becomes crucial. We will present a formal framework for component composition for object-based software development. The deployment of modal logics for defining components and component composition will allow us to reason about and prove properties of components and compositions

    Using neural networks in software repositories

    Get PDF
    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology

    Change Support in Process-Aware Information Systems - A Pattern-Based Analysis

    Get PDF
    In today's dynamic business world the economic success of an enterprise increasingly depends on its ability to react to changes in its environment in a quick and flexible way. Process-aware information systems (PAIS) offer promising perspectives in this respect and are increasingly employed for operationally supporting business processes. To provide effective business process support, flexible PAIS are needed which do not freeze existing business processes, but allow for loosely specified processes, which can be detailed during run-time. In addition, PAIS should enable authorized users to flexibly deviate from the predefined processes if required (e.g., by allowing them to dynamically add, delete, or move process activities) and to evolve business processes over time. At the same time PAIS must ensure consistency and robustness. The emergence of different process support paradigms and the lack of methods for comparing existing change approaches have made it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster the systematic comparison of existing process management technology with respect to process change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry. The identified change patterns and change support features facilitate the comparison of change support frameworks, and consequently will support PAIS engineers in selecting the right technology for realizing flexible PAIS. In addition, this work can be used as a reference for implementing more flexible PAIS
    corecore