3,048 research outputs found

    Distributed Object Medical Imaging Model

    Get PDF
    Abstract- Digital medical informatics and images are commonly used in hospitals today,. Because of the interrelatedness of the radiology department and other departments, especially the intensive care unit and emergency department, the transmission and sharing of medical images has become a critical issue. Our research group has developed a Java-based Distributed Object Medical Imaging Model(DOMIM) to facilitate the rapid development and deployment of medical imaging applications in a distributed environment that can be shared and used by related departments and mobile physiciansDOMIM is a unique suite of multimedia telemedicine applications developed for the use by medical related organizations. The applications support realtime patients’ data, image files, audio and video diagnosis annotation exchanges. The DOMIM enables joint collaboration between radiologists and physicians while they are at distant geographical locations. The DOMIM environment consists of heterogeneous, autonomous, and legacy resources. The Common Object Request Broker Architecture (CORBA), Java Database Connectivity (JDBC), and Java language provide the capability to combine the DOMIM resources into an integrated, interoperable, and scalable system. The underneath technology, including IDL ORB, Event Service, IIOP JDBC/ODBC, legacy system wrapping and Java implementation are explored. This paper explores a distributed collaborative CORBA/JDBC based framework that will enhance medical information management requirements and development. It encompasses a new paradigm for the delivery of health services that requires process reengineering, cultural changes, as well as organizational changes

    A middleware for a large array of cameras

    Get PDF
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    Towards a design-by-contract based approach for realizable connector-centric software architectures

    Get PDF
    Despite being a widely-used language for specifying software systems, UML remains less than ideal for software architectures. Architecture description languages (ADLs) were developed to provide more comprehensive support. However, so far the application of ADLs in practice has been impeded by at least one of the following problems: (i) advanced formal notations, (ii) lack of support for complex connectors, and (iii) potentially unrealizable designs. In this paper we propose a new ADL that is based on Design-by-Contract (DbC) for specifying software architectures. While DbC promotes a formal and precise way of specifying system behaviours, it is more familiar to practising developers, thus allowing for a more comfortable way of specifying architectures than using process algebras. Furthermore, by granting connectors a first-class status, our ADL allows designers to specify not only simple interaction mechanisms as connectors but also complex interaction protocols. Finally, in order to ensure that architectural designs are always realizable we eliminate potentially unrealizable constructs in connector specifications (the connector “glue”)

    Platform-independent Dynamic Reconfiguration of Distributed Applications

    Get PDF
    The aim of dynamic reconfiguration is to allow a system to evolve incrementally from one configuration to another at run-time, without restarting it or taking it offline. In recent years, support for transparent dynamic reconfiguration has been added to middleware platforms, shifting the complexity required to enable dynamic reconfiguration to the supporting infrastructure. These approaches to dynamic reconfiguration are mostly platform-specific and depend on particular implementation approaches suitable for particular platforms. In this paper, we propose an approach to dynamic reconfiguration of distributed applications that is suitable for application implemented on top of different platforms. This approach supports a platform-independent view of an application that profits from reconfiguration transparency. In this view, requirements on the ability to reconfigure components are expressed in an abstract manner. These requirements are then satisfied by platform-specific realizations

    On Systematic Design of Protectors for Employing OTS Items

    Get PDF
    Off-the-shelf (OTS) components are increasingly used in application areas with stringent dependability requirements. Component wrapping is a well known structuring technique used in many areas. We propose a general approach to developing protective wrappers that assist in integrating OTS items with a focus on the overall system dependability. The wrappers are viewed as redundant software used to detect errors or suspicious activity and to execute appropriate recovery when possible; wrapper development is considered as a part of system integration activities. Wrappers are to be rigorously specified and executed at run time as a means of protecting OTS items against faults in the rest of the system, and the system against the OTS item's faults. Possible symptoms of erroneous behaviour to be detected by a protective wrapper and possible actions to be undertaken in response are listed and discussed. The information required for wrapper development is provided by traceability analysis. Possible approaches to implementing “protectors” in the standard current component technologies are briefly outline

    Precise service level agreements

    Get PDF
    SLAng is an XML language for defining service level agreements, the part of a contract between the client and provider of an Internet service that describes the quality attributes that the service is required to possess. We define the semantics of SLAng precisely by modelling the syntax of the language in UML, then embedding the language model in an environmental model that describes the structure and behaviour of services. The presence of SLAng elements imposes behavioural constraints on service elements, and the precise definition of these constraints using OCL constitutes the semantic description of the language. We use the semantics to define a notion of SLA compatibility, and an extension to UML that enables the modelling of service situations as a precursor to analysis, implementation and provisioning activities

    ArchOptions: A Real Options-Based Model for Predicting the Stability of Software Architectures

    Get PDF
    Architectural stability refers to the extent an architecture is flexible to endure evolutionary changes in stakeholders\' requirements and the environment. We assume that the primary goal of software architecture is to guide the system\'s evolution. We contribute to a novel model that exploits options theory to predict architectural stability. The model is predictive: it provides \"insights\" on the evolution of the software system based on valuing the extent an architecture can endure a set of likely evolutionary changes. The model builds on Black and Scholes financial options theory (Noble Prize wining) to value such extent. We show how we have derived the model: the analogy and assumptions made to reach the model, its formulation, and possible interpretations. We refer to this model as ArchOptions

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas
    • …
    corecore