556 research outputs found

    Domain Specific Language for Geometric Relations between Rigid Bodies targeted to robotic applications

    Full text link
    This paper presents a DSL for geometric relations between rigid bodies such as relative position, orientation, pose, linear velocity, angular velocity, and twist. The DSL is the formal model of the recently proposed semantics for the standardization of geometric relations between rigid bodies, referred to as `geometric semantics'. This semantics explicitly states the coordinate-invariant properties and operations, and, more importantly, all the choices that are made in coordinate representations of these geometric relations. This results in a set of concrete suggestions for standardizing terminology and notation, allowing programmers to write fully unambiguous software interfaces, including automatic checks for semantic correctness of all geometric operations on rigid-body coordinate representations. The DSL is implemented in two different ways: an external DSL in Xcore and an internal DSL in Prolog. Besides defining a grammar and operations, the DSL also implements constraints. In the Xcore model, the Object Constraint Language language is used, while in the Prolog model, the constraint are natively modelled in Prolog. This paper discusses the implemented DSL and the tools developed on top of this DSL. In particular an editor, checking the semantic constraints and providing semantic meaningful errors during editing is proposed.Comment: Presented at DSLRob 2012 (arXiv:cs/1302.5082

    Intuitive Instruction of Industrial Robots : A Knowledge-Based Approach

    Get PDF
    With more advanced manufacturing technologies, small and medium sized enterprises can compete with low-wage labor by providing customized and high quality products. For small production series, robotic systems can provide a cost-effective solution. However, for robots to be able to perform on par with human workers in manufacturing industries, they must become flexible and autonomous in their task execution and swift and easy to instruct. This will enable small businesses with short production series or highly customized products to use robot coworkers without consulting expert robot programmers. The objective of this thesis is to explore programming solutions that can reduce the programming effort of sensor-controlled robot tasks. The robot motions are expressed using constraints, and multiple of simple constrained motions can be combined into a robot skill. The skill can be stored in a knowledge base together with a semantic description, which enables reuse and reasoning. The main contributions of the thesis are 1) development of ontologies for knowledge about robot devices and skills, 2) a user interface that provides simple programming of dual-arm skills for non-experts and experts, 3) a programming interface for task descriptions in unstructured natural language in a user-specified vocabulary and 4) an implementation where low-level code is generated from the high-level descriptions. The resulting system greatly reduces the number of parameters exposed to the user, is simple to use for non-experts and reduces the programming time for experts by 80%. The representation is described on a semantic level, which means that the same skill can be used on different robot platforms. The research is presented in seven papers, the first describing the knowledge representation and the second the knowledge-based architecture that enables skill sharing between robots. The third paper presents the translation from high-level instructions to low-level code for force-controlled motions. The two following papers evaluate the simplified programming prototype for non-expert and expert users. The last two present how program statements are extracted from unstructured natural language descriptions

    Safe-guarded multi-agent control for mechatronic systems: implementation framework and design patterns

    Get PDF
    This thesis addresses two issues: (i) developing an implementation framework for Multi-Agent Control Systems (MACS); and (ii) developing a pattern-based safe-guarded MACS design method.\ud \ud The Multi-Agent Controller Implementation Framework (MACIF), developed by Van Breemen (2001), is selected as the starting point because of its capability to produce MACS for solving complex control problems with two useful features:\ud • MACS is hierarchically structured in terms of a coordinated group of elementary and/or composite controller-agents;\ud • MACS has an open architecture such that controller-agents can be added, modified or removed without redesigning and/or reprogramming the remaining part of the MACS

    Towards a Domain Specific Language for a Scene Graph based Robotic World Model

    Full text link
    Robot world model representations are a vital part of robotic applications. However, there is no support for such representations in model-driven engineering tool chains. This work proposes a novel Domain Specific Language (DSL) for robotic world models that are based on the Robot Scene Graph (RSG) approach. The RSG-DSL can express (a) application specific scene configurations, (b) semantic scene structures and (c) inputs and outputs for the computational entities that are loaded into an instance of a world model.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    An object-oriented modelling method for evolving the hybrid vehicle design space in a systems engineering environment

    Get PDF
    A combination of environmental awareness, consumer demands and pressure from legislators has led automotive manufacturers to seek for more environmentally friendly alternatives while still meeting the quality, performance and price demands of their customers. This has led to many complex powertrain designs being developed in order to produce vehicles with reduced carbon emissions. In particular, within the last decade most of the major automotive manufactures have either developed or announced plans to develop one or more hybrid vehicle models. This means that to be competitive and o er the best HEV solutions to customers, manufacturers have to assess a multitude of complex design choices in the most e cient way possible. Even though the automotive industry is adept at dealing with the many complexities of modern vehicle development; the magnitude of design choices, the cross coupling of multiple domains, the evolving technologies and the relative lack of experience with respect to conventional vehicle development compounds the complexities within the HEV design space. In order to meet the needs of e cient and exible HEV powertrain modelling within this design space, a parallel is drawn with the development of complex software systems. This parallel is both from a programmatic viewpoint where object-oriented techniques can be used for physical model development with new equation oriented modelling environments, and from a systems methodology perspective where the development approach encourages incremental development in order to minimize risk. This Thesis proposes a modelling method that makes use of these new tools to apply OOM principles to the design and development of HEV powertrain models. Furthermore, it is argued that together with an appropriate systems engineering approach within which the model development activities will occur, the proposed method can provide a more exible and manageable manner of exploring the HEV design space.The exibility of the modelling method is shown by means of two separate case studies, where a hierarchical library of extendable and replaceable models is developed in order to model the di erent powertrains. Ultimately the proposed method leads to an intuitive manner of developing a complex system model through abstraction and incremental development of the abstracted subsystems. Having said this, the correct management of such an e ort within the automotive industry is key for ensuring the reusability of models through enforced procedures for structuring, maintaining, controlling, documenting and protecting the model development. Further, in order to integrate the new methodology into the existing systems and practices it is imperative to develop an e cient means of sharing information between all stakeholders involved. In this respect it is proposed that together with an overall systems modelling activity for tracking stakeholder involvement and providing a central point for sharing data, CAE methods can be employed in order to automate the integration of data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Quantised State Systems Approach Towards Declarative Autonomous Control

    Get PDF

    A Survey on Domain-Specific Modeling and Languages in Robotics

    Get PDF
    Nordmann A, Hochgeschwender N, Wigand DL, Wrede S. A Survey on Domain-Specific Modeling and Languages in Robotics. Journal of Software Engineering in Robotics. 2016;7(1):75-99

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission

    The 14th Overture Workshop: Towards Analytical Tool Chains

    Get PDF
    This report contains the proceedings from the 14th Overture workshop organized in connection with the Formal Methods 2016 symposium. This includes nine papers describing different technological progress in relation to the Overture/VDM tool support and its connection with other tools such as Crescendo, Symphony, INTO-CPS, TASTE and ViennaTalk

    Multi-paradigm modelling for cyber–physical systems: a descriptive framework

    Get PDF
    The complexity of cyber–physical systems (CPSS) is commonly addressed through complex workflows, involving models in a plethora of different formalisms, each with their own methods, techniques, and tools. Some workflow patterns, combined with particular types of formalisms and operations on models in these formalisms, are used successfully in engineering practice. To identify and reuse them, we refer to these combinations of workflow and formalism patterns as modelling paradigms. This paper proposes a unifying (Descriptive) Framework to describe these paradigms, as well as their combinations. This work is set in the context of Multi-Paradigm Modelling (MPM), which is based on the principle to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and workflows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these formalisms, workflows, and their combinations. One crucial part of the framework is the ability to capture the structural essence of a paradigm through the concept of a paradigmatic structure. This is illustrated informally by means of two example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented framework also identifies the need to establish whether a paradigm candidate follows, or qualifies as, a (given) paradigm. To illustrate the ability of the framework to support combining paradigms, the paper shows examples of both workflow and formalism combinations. The presented framework is intended as a basis for characterisation and classification of paradigms, as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation for MPM tool development
    • …
    corecore