2,274 research outputs found

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).González-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798

    Numerical simulation of the stress-strain state of the dental system

    Full text link
    We present mathematical models, computational algorithms and software, which can be used for prediction of results of prosthetic treatment. More interest issue is biomechanics of the periodontal complex because any prosthesis is accompanied by a risk of overloading the supporting elements. Such risk can be avoided by the proper load distribution and prediction of stresses that occur during the use of dentures. We developed the mathematical model of the periodontal complex and its software implementation. This model is based on linear elasticity theory and allows to calculate the stress and strain fields in periodontal ligament and jawbone. The input parameters for the developed model can be divided into two groups. The first group of parameters describes the mechanical properties of periodontal ligament, teeth and jawbone (for example, elasticity of periodontal ligament etc.). The second group characterized the geometric properties of objects: the size of the teeth, their spatial coordinates, the size of periodontal ligament etc. The mechanical properties are the same for almost all, but the input of geometrical data is complicated because of their individual characteristics. In this connection, we develop algorithms and software for processing of images obtained by computed tomography (CT) scanner and for constructing individual digital model of the tooth-periodontal ligament-jawbone system of the patient. Integration of models and algorithms described allows to carry out biomechanical analysis on three-dimensional digital model and to select prosthesis design.Comment: 19 pages, 9 figure

    Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm

    Get PDF
    Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved in the model integration process, discuss modelling and software development approaches, and present preliminary results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant reaction and transport in bed-sediments

    ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY

    Full text link
    El proyecto de investigación propuesto se enmarca dentro del área de diseño de producto con aplicaciones de modelado sólido CAD/CAM (Computer Aided Design/Computer Aided Manufacturing). Concretamente, se pretende hacer un estudio de las herramientas de anotación asociativas disponibles en las aplicaciones comerciales de modelado CAD con el fin de analizar su uso, viabilidad, eficiencia y efectos en la modificación y reutilización de modelos digitales 3D, así como en la gestión y comunicación del conocimiento técnico vinculado al diseño. La idea principal de esta investigación doctoral es establecer un método para representar y evaluar el conocimiento implícito de los ingenieros de diseño acerca de un modelo digital, así como la integración dinámica de dicho conocimiento en el propio modelo CAD, a través de anotaciones, con el objetivo de poder almacenar y comunicar eficientemente la mayor cantidad de información útil acerca del modelo, y reducir el tiempo y esfuerzo requeridos para su alteración y/o reutilización.Dorribo Camba, J. (2014). ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/45997TESI

    Optimized Dual Expander Aerospike Rocket

    Get PDF
    Research at the Air Force Institute of Technology (AFIT) focused on designing a cryogenic dual-expander aerospike nozzle (DEAN) upper stage rocket engine to produce 50,000 pounds-force (222.4 kilo-Newtons) vacuum thrust, 464 seconds of vacuum specific impulse and a thrust-to-weight ratio of 106.5. The use of dual expander cycles improves engine reliability, maximizes efficiency, and eliminates some catastrophic failure modes. An upper stage engine with an aerospike nozzle is shorter and lighter than an equivalent performing conventional bell nozzle upper stage engine. Previous research focused on first developing a feasible closed DEAN design model and secondly expanding the model to support parametric trade and optimization studies. The current research effort used previous research as a foundation to create a reliable system level modeling tool to estimate performance, engine weight, and geometry for the DEAN concept. The model incorporated the Numerical Propulsion System Simulation (NPSSTM) software by NASA, Two-Dimensional Kinetics ?04 (TDK?04TM) by Software and Engineering Associates, Inc, and ModelCenterTM by Phoenix Integration. Research obtained a new DEAN design point meeting physical and reusability design constraints from model trade and optimization studies. The new design has a vacuum thrust and a thrust-to-weight ratio of 50,161 lbf (223.1 kN) and 142.2, respectively. Furthermore, the new design has a vacuum specific impulse of 430.6 seconds, failing to meet the vacuum specific impulse design goal by 33.4 seconds or 7.3%. The model used common metals, alloys, and ceramics to improve near-term anufacturability of the DEAN. Current research laid a pathway for further research to find the optimum DEAN design point meeting all the design goals including vacuum specific impulse

    A Genetic Algorithm for Fixture Synthesis and Variation

    Get PDF
    Concepts in manufacturing such as CIMS (Computer Integrated Manufacturing Systems), JIT (Just In Time), Lean Production, Virtual Manufacturing, and Flexible Fixturing have been proposed to meet the fundamental requirements of manufacturing - decrease the cost and satisfy the needs of customers. Fast fixture generation and fixture reusability are essential in the current manufacturing environment. The dissertation focuses on the models, methods, and algorithms for fixture synthesis and variation that satisfy the functional requirements specified by on-site industrial engineers. With the reusability of a fixture base combined with variation of other fixture components, fixture configuration can be rapidly adapted and accommodated to the new workpiece. The dissertation presents methods and algorithms for fixture base synthesis, which directly result in fixture reusability. Optimization functions are derived based on engineering requirements due to the mass production nature of automotive parts. Specific optimization algorithms are developed and their complexities, compared to other alternatives, are comprehensively evaluated according to different optimization functions. The fixture variation and reusability provide an engineering tool to rapidly generate and validate fixtures in production planning stage. It applies scientific reasoning methodology in combination with best knowledge of fixture designs, which heavily relies on designers\u27 manufacturing knowledge and experience. It also provides means to bridge the gap between CAD and CAM integration and therefore reduces the new product and production development cycle time and cost while maintaining the quality of fixtures

    Design Optimization and Higher Order FEA of Hat-Stiffened Aerospace Composite Structures

    Get PDF
    Sizing of hat-stiffened composite panels is challenging because of the broad design hyperspace in several geometric and material parameters available to the designer. Design tasks can be simplified if parameter sensitivity analysis is performed a priori and design data is made available in terms of a few important parameters. In this chapter, design sensitivity analysis is performed using finite element analysis (FEA) and analytical solution models. Manufacturing and experimental measurements of a hat-stiffened composite structure is performed to validate the FEA and idealized analytical solutions. This is an attempt to initiate a structural architecture methodology to speed the development and qualification of composite aircraft that will reduce design cost, increase the possibility of content reuse, and improve time-to-market. In particular, FEA results were compared with analytical solutions to develop a design methodology that will allow extensive reuse of parametric hat-stiffened panels in the design of composites structural components. This methodology is now widely utilized in developing a library of commonly used, built-in, composite structural elements in design of modern aircrafts. In this chapter, hat stiffened composite panels’ geometric parameter sensitivity analysis work were parametrically investigated using finite element analysis (FEA), analytical solution models and experimental testing on manufactured parts in order to develop structural architectures that speed development and qualification of composite aircraft which has broad benefits in reducing cost, increasing content reuse and improving time-to-market. In particular, FEA results were compared with analytical solutions and a design methodology was developed to allow extensive reuse of parametric elements in structural design of composites and to achieve expedited design, verification, validation, and airworthiness certification and qualification. The goal of this work is to provide the aviation industry with the most up-to-date databases for the application of advanced composite materials incorporated into parametric models to eliminate redundancies in the current process. The work results include a correlated material database, an optimized model component library and a standardized way to design future complex composites structures, e.g. hat stiffened composites panels, with reliable and predictable quality and material weight/cost

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies
    corecore