604 research outputs found

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Low Noise, Jitter Tolerant Continuous-Time Sigma-Delta Modulator

    Get PDF
    The demand for higher data rates in receivers with carrier aggregation (CA) such as LTE, increases the efforts to integrate large number of wireless services into single receiving path, so it needs to digitize the signal in intermediate or high frequencies. It relaxes most of the front-end blocks but makes the design of ADC very challenging. Solving the bottleneck associated with ADC in receiver architecture is a major focus of many ongoing researches. Recently, continuous time Sigma-Delta analog-to-digital converters (ADCs) are getting more attention due to their inherent filtering properties, lower power consumption and wider input bandwidth. But, it suffers from several non-idealities such as clock jitter and ELD which decrease the ADC performance. This dissertation presents two projects that address CT-ΣΔ modulator non-idealities. One of the projects is a CT- ΣΔ modulator with 10.9 Effective Number of Bits (ENOB) with Gradient Descent (GD) based calibration technique. The GD algorithm is used to extract loop gain transfer function coefficients. A quantization noise reduction technique is then employed to improve the Signal to Quantization Noise Ratio (SQNR) of the modulator using a 7-bit embedded quantizer. An analog fast path feedback topology is proposed which uses an analog differentiator in order to compensate excess loop delay. This approach relaxes the requirements of the amplifier placed in front of the quantizer. The modulator is implemented using a third order loop filter with a feed-forward compensation paths and a 3-bit quantizer in the feedback loop. In order to save power and improve loop linearity a two-stage class-AB amplifier is developed. The prototype modulator is implemented in 0.13μm CMOS technology, which achieves peak Signal to Noise and Distortion Ratio (SNDR) of 67.5dB while consuming total power of 8.5-mW under a 1.2V supply with an over sampling ratio of 10 at 300MHz sampling frequency. The prototype achieves Walden's Figure of Merit (FoM) of 146fJ/step. The second project addresses clock jitter non-ideality in Continuous Time Sigma Delta modulators (CT- ΣΔM), the modulator suffer from performance degradation due to uncertainty in timing of clock at digital-to-analog converter (DAC). This thesis proposes to split the loop filter into two parts, analog and digital part to reduce the sensitivity of feedback DAC to clock jitter. By using the digital first-order filter after the quantizer, the effect of clock jitter is reduced without changing signal transfer function (STF). On the other hand, as one pole of the loop filter is implemented digitally, the power and area are reduced by minimizing active analog elements. Moreover, having more digital blocks in the loop of CT- ΣΔM makes it less sensitive to process, voltage, and temperature variations. We also propose the use of a single DAC with a current divider to implement feedback coefficients instead of two DACs to decrease area and clock routing. The prototype is implemented in TSMC 40 nm technology and occupies 0.06 mm^2 area; the proposed solution consumes 6.9 mW, and operates at 500 MS/s. In a 10 MHz bandwidth, the measured dynamic range (DR), peak signal-to-noise-ratio (SNR), and peak signal-to-noise and distortion (SNDR) ratios in presence of 4.5 ps RMS clock jitter (0.22% clock period) are 75 dB, 68 dB, and 67 dB, respectively. The proposed structure is 10 dB more tolerant to clock jitter when compared to the conventional ΣΔM design for similar loop filter

    Bandpass electromechanical sigma-delta modulator

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Undersampling bandpass modulator architectures

    Get PDF
    Continuous-time delta sigma modulators -- Undersampling Delta-sigma modulators for radio receivers -- A novel continuous-time delta sigma modulator -- New delta modulator based on undersampling

    Q-enhancement with on-chip inductor optimization for reconfigurable Δ-Σ radio-frequency ADC

    Get PDF
    The paper details on-chip inductor optimization for a reconfigurable continuous-time delta-sigma (Δ-Σ) modulator based radio-frequency analog-to-digital converter. Inductor optimisation enables the Δ-Σ modulator with Q enhanced LC tank circuits employing a single high Q-factor on-chip inductor and lesser quantizer levels thereby reducing the circuit complexity for excess loop delay, power dissipation and dynamic element matching. System level simulations indicate at a Q-factor of 75 Δ- Σ modulator with a 3-level quantizer achieves dynamic ranges of 106, 82 dB and 84 dB for RFID, TETRA, and Galileo over bandwidths of 200 kHz, 10 MHz and 40 MHz respectively

    Low power/low voltage techniques for analog CMOS circuits

    Get PDF
    corecore