2,386 research outputs found

    Association of NPAC score with survival after acute myocardial infarction

    Get PDF
    BACKGROUND AND AIMS: Risk stratification in acute myocardial infarction (AMI) is important for guiding clinical management. Current risk scores are mostly derived from clinical trials with stringent patient selection. We aimed to establish and evaluate a composite scoring system to improve short-term mortality classification after index episodes of AMI, independent of electrocardiography (ECG) pattern, in a large real-world cohort. METHODS: Using electronic health records, patients admitted to our regional teaching hospital (derivation cohort, n = 1747) and an independent tertiary care center (validation cohort, n = 1276), with index acute myocardial infarction between January 2013 and December 2017, as confirmed by principal diagnosis and laboratory findings, were identified retrospectively. RESULTS: Univariate logistic regression was used as the primary model to identify potential contributors to mortality. Stepwise forward likelihood ratio logistic regression revealed that neutrophil-to-lymphocyte ratio, peripheral vascular disease, age, and serum creatinine (NPAC) were significant for 90-day mortality (Hosmer- Lemeshow test, p = 0.21). Each component of the NPAC score was weighted by beta-coefficients in multivariate analysis. The C-statistic of the NPAC score was 0.75, which was higher than the conventional Charlson's score (C-statistic = 0.63). Judicious application of a deep learning model to our dataset improved the accuracy of classification with a C-statistic of 0.81. CONCLUSIONS: The NPAC score comprises four items from routine laboratory parameters to basic clinical information and can facilitate early identification of cases at risk of short-term mortality following index myocardial infarction. Deep learning model can serve as a gatekeeper to facilitate clinical decision-making

    Current and Future Use of Artificial Intelligence in Electrocardiography.

    Get PDF
    Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Manuel Marina-Breysse has received funding from European Union’s Horizon 2020 research and innovation program under the grant agreement number 965286; Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, MAESTRIA Consortium; and EIT Health, a body of the European Union.S

    Unsupervised learning to characterize patients with known coronary artery disease undergoing myocardial perfusion imaging

    Full text link
    PURPOSE Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone

    Data Science Methods for Nursing-Relevant Patient Outcomes and Clinical Processes The 2019 Literature Year in Review

    Get PDF
    Data science continues to be recognized and used within healthcare due to the increased availability of large data sets and advanced analytics. It can be challenging for nurse leaders to remain apprised of this rapidly changing landscape. In this article, we describe our findings from a scoping literature review of papers published in 2019 that use data science to explore, explain, and/or predict 15 phenomena of interest to nurses. Fourteen of the 15 phenomena were associated with at least one paper published in 2019. We identified the use of many contemporary data science methods (eg, natural language processing, neural networks) for many of the outcomes. We found many studies exploring Readmissions and Pressure Injuries. The topics of Artificial Intelligence/Machine Learning Acceptance, Burnout, Patient Safety, and Unit Culture were poorly represented. We hope that the studies described in this article help readers: (1) understand the breadth and depth of data science\u27s ability to improve clinical processes and patient outcomes that are relevant to nurses and (2) identify gaps in the literature that are in need of exploratio

    Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms

    Get PDF
    Stratifying prognosis following coronary bifurcation percutaneous coronary intervention (PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML) algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification model built on clinical, anatomical, and procedural features to predict all-cause mortality following contemporary bifurcation PCI. Multiple ML models to predict all-cause mortality were tested on a cohort of 2393 patients (training, n = 1795; internal validation, n = 598) undergoing bifurcation PCI with contemporary stents from the real-world RAIN registry. Twenty-five commonly available patient-/lesion-related features were selected to train ML models. The best model was validated in an external cohort of 1701 patients undergoing bifurcation PCI from the DUTCH PEERS and BIO-RESORT trial cohorts. At ROC curves, the AUC for the prediction of 2-year mortality was 0.79 (0.74–0.83) in the overall population, 0.74 (0.62–0.85) at internal validation and 0.71 (0.62–0.79) at external validation. Performance at risk ranking analysis, k-center cross-validation, and continual learning confirmed the generalizability of the models, also available as an online interface. The RAIN-ML prediction model represents the first tool combining clinical, anatomical, and procedural features to predict all-cause mortality among patients undergoing contemporary bifurcation PCI with reliable performance

    Development of Prediction Models for Acute Myocardial Infarction at Prehospital Stage with Machine Learning Based on a Nationwide Database

    Get PDF
    Models for predicting acute myocardial infarction (AMI) at the prehospital stage were developed and their efficacy compared, based on variables identified from a nationwide systematic emergency medical service (EMS) registry using conventional statistical methods and machine learning algorithms. Patients in the EMS cardiovascular registry aged &gt;15 years who were transferred from the public EMS to emergency departments in Korea from January 2016 to December 2018 were enrolled. Two datasets were constructed according to the hierarchical structure of the registry. A total of 184,577 patients (Dataset 1) were included in the final analysis. Among them, 72,439 patients (Dataset 2) were suspected to have AMI at prehospital stage. Between the models derived using the conventional logistic regression method, the B-type model incorporated AMI-specific variables from the A-type model and exhibited a superior discriminative ability (p = 0.02). The models that used extreme gradient boosting and a multilayer perceptron yielded a higher predictive performance than the conventional logistic regression-based models for analyses that used both datasets. Each machine learning algorithm yielded different classification lists of the 10 most important features. Therefore, prediction models that use nationwide prehospital data and are developed with appropriate structures can improve the identification of patients who require timely AMI management.ope

    A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool

    Get PDF
    Background: Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD. Objective: This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP 3 ) framework benefiting the pharmaceutical paradigm. Method: The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdge TM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers. Conclusions: Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdge TM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm

    A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool

    Get PDF
    Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD.This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP3) framework benefiting the pharmaceutical paradigm.The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdgeTM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers.Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdgeTM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm
    corecore