192 research outputs found

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-Based Robotic Grasping.

    Full text link
    This article presents a method for grasping novel objects by learning from experience. Successful attempts are remembered and then used to guide future grasps such that more reliable grasping is achieved over time. To transfer the learned experience to unseen objects, we introduce the dense geometric correspondence matching network (DGCM-Net). This applies metric learning to encode objects with similar geometry nearby in feature space. Retrieving relevant experience for an unseen object is thus a nearest neighbor search with the encoded feature maps. DGCM-Net also reconstructs 3D-3D correspondences using the view-dependent normalized object coordinate space to transform grasp configurations from retrieved samples to unseen objects. In comparison to baseline methods, our approach achieves an equivalent grasp success rate. However, the baselines are significantly improved when fusing the knowledge from experience with their grasp proposal strategy. Offline experiments with a grasping dataset highlight the capability to transfer grasps to new instances as well as to improve success rate over time from increasing experience. Lastly, by learning task-relevant grasps, our approach can prioritize grasp configurations that enable the functional use of objects

    Non-Prehensile Manipulation in Clutter with Human-In-The-Loop

    Get PDF
    We propose a human-operator guided planning approach to pushing-based manipulation in clutter. Most recent approaches to manipulation in clutter employs randomized planning. The problem, however, remains a challenging one where the planning times are still in the order of tens of seconds or minutes, and the success rates are low for difficult instances of the problem. We build on these control-based randomized planning approaches, but we investigate using them in conjunction with human-operator input. In our framework, the human operator supplies a high-level plan, in the form of an ordered sequence of objects and their approximate goal positions. We present experiments in simulation and on a real robotic setup, where we compare the success rate and planning times of our human-in-the-loop approach with fully autonomous sampling-based planners. We show that with a minimal amount of human input, the low-level planner can solve the problem faster and with higher success rates

    Dusty: an assistive mobile manipulator that retrieves dropped objects for people with motor impairments

    Get PDF
    People with physical disabilities have ranked object retrieval as a high priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.4%) when autonomously grasping 25 objects considered important by people with amyotrophic lateral sclerosis (ALS). We tested the robot with each object in five different configurations on five types of flooring. We then present the results of an experiment in which 20 people with ALS operated Dusty. Participants teleoperated Dusty to move around an obstacle, pick up an object, and deliver the object to themselves. They successfully completed this task in 59 out of 60 trials (3 trials each) with a mean completion time of 61.4 seconds (SD=20.5 seconds), and reported high overall satisfaction using Dusty (7-point Likert scale; 6.8 SD=0.6). Participants rated Dusty to be significantly easier to use than their own hands, asking family members, and using mechanical reachers (p < 0.03, paired t-tests). 14 of the 20 participants reported that they would prefer using Dusty over their current methods
    • …
    corecore