65 research outputs found

    Polarimetric Alos/Palsar-2 data for retrieving aboveground biomass of secondary forest in the Brazilian Amazon

    Get PDF
    Secondary forests (SFs) are one of the major carbon sink in the Neotropics due to the rapid carbon assimilating in their aboveground biomass (AGB). However, the accurate contribution of the SFs to the carbon cycle is a great challenge because of the uncertainty in AGB estimates. In this context, the main objective of this work is to explore polarimetric Alos/Palsar-2 data from to model AGB in the SFs of the Central Amazon, Amazonas State. Forest inventory was conducted in 2014 with the measured of 23 field plots. Multiple linear regression analysis was performed to select the best model by corrected AIC w and validated by leave-one-out bootstrapping method. The best fitted model has six parameters and explained 65% of the aboveground biomass variability. The prediction error was calculated to be RMSEP = 8.8 ± 2.98 Mg.ha -1 (8.75%). The main polarimetric attributes in the model were those direct related to multiple scattering mechanisms as the Shannon Entropy and the volumetric mechanism of Bhattacharya decomposition; and those related to increase in double-bounce as the co-polarization ratio (VV/HH) resulted of soil-trunk interactions. Such models are intended to improve accuracy for mapping SFs AGB in often cloudy environments as in the Brazilian Amazon

    Retrieving secondary forest aboveground biomass from polarimetric ALOS-2 PALSAR-2 data in the Brazilian Amazon

    Get PDF
    Secondary forests (SF) are important carbon sinks, removing CO2 from the atmosphere through the photosynthesis process and storing photosynthates in their aboveground live biomass (AGB). This process occurring at large-scales partially counteracts C emissions from land-use change, playing, hence, an important role in the global carbon cycle. The absorption rates of carbon in these forests depend on forest physiology, controlled by environmental and climatic conditions, as well as on the past land use, which is rarely considered for retrieving AGB from remotely sensed data. In this context, the main goal of this study is to evaluate the potential of polarimetric (quad-pol) ALOS-2 PALSAR-2 data for estimating AGB in a SF area. Land-use was assessed through Landsat time-series to extract the SF age, period of active land-use (PALU), and frequency of clear cuts (FC) to randomly select the SF plots. A chronosequence of 42 SF plots ranging 3-28 years (20 ha) near the Tapajós National Forest in Pará state was surveyed to quantifying AGB growth. The quad-pol data was explored by testing two regression methods, including non-linear (NL) and multiple linear regression models (MLR).We also evaluated the influence of the past land-use in the retrieving AGB through correlation analysis. The results showed that the biophysical variables were positively correlated with the volumetric scattering, meaning that SF areas presented greater volumetric scattering contribution with increasing forest age. Mean diameter, mean tree height, basal area, species density, and AGB were significant and had the highest Pearson coefficients with the Cloude decomposition (λ3), which in turn, refers to the volumetric contribution backscattering from cross-polarization (HV) (ρ = 0.57-0.66, p-value < 0.001). On the other hand, the historical use (PALU and FC) showed the highest correlation with angular decompositions, being the Touzi target phase angle the highest correlation (Φs) (ρ = 0.37 and ρ = 0.38, respectively). The combination of multiple prediction variables with MLR improved the AGB estimation by 70% comparing to the NL model (R2 adj. = 0.51; RMSE = 38.7 Mg ha-1) bias = 2.1 ± 37.9 Mg ha-1 by incorporate the angular decompositions, related to historical use, and the contribution volumetric scattering, related to forest structure, in the model. The MLR uses six variables, whose selected polarimetric attributes were strongly related with different structural parameters such as the mean forest diameter, basal area, and the mean forest tree height, and not with the AGB as was expected. The uncertainty was estimated to be 18.6% considered all methodological steps of the MLR model. This approach helped us to better understand the relationship between parameters derived from SAR data and the forest structure and its relation to the growth of the secondary forest after deforestation events

    Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands

    Get PDF
    The aim of this study is to evaluate the potential of multifrequency and Full-polarimetric Synthetic Aperture Radar (SAR) data for retrieving both Above Ground Biomass (AGB) and Leaf Area Index (LAI) in the Amazon floodplain forest environment. Two specific questions were proposed: (a) Does multifrequency SAR data perform more efficiently than single-frequency data in estimating LAI and AGB of várzea forests?; and (b) Are quad-pol SAR data more efficient than single- and dual-pol SAR data in estimating LAI and AGB of várzea forest? To answer these questions, data from different sources (TerraSAR-X Multi Look Ground Range Detected (MGD), Radarsat-2 Standard Qual-Pol, advanced land observing satellite (ALOS)/ phased-arrayed L-band SAR (PALSAR-1). Fine-beam dual (FDB) and quad Polarimetric mode) were combined in 10 different scenarios to model both LAI and AGB. A R-platform routine was implemented to automatize the selection of the best regression models. Results indicated that ALOS/PALSAR variables provided the best estimates for both LAI and AGB. Single-frequency L-band data was more efficient than multifrequency SAR. PALSAR-FDB HV-dB provided the best LAI estimates during low-water season. The best AGB estimates at high-water season were obtained by PALSAR-1 quad-polarimetric data. The top three features for estimating AGB were proportion of volumetric scattering and both the first and second dominant phase difference between trihedral and dihedral scattering, extracted from Van Zyl and Touzi decomposition, respectively. The models selected for both AGB and LAI were parsimonious. The Root Mean Squared Error (RMSEcv), relative overall RMSEcv (%) and R2 value for LAI were 0.61%, 0.55% and 13%, respectively, and for AGB, they were 74.6 t·ha−1, 0.88% and 46%, respectively. These results indicate that L-band (ALOS/PALSAR-1) has a high potential to provide quantitative and spatial information about structural forest attributes in floodplain forest environments. This potential may be extended not only with PALSAR-2 data but also to forthcoming missions (e.g., NISAR, Global Ecosystems Dynamics Investigation Lidar (GEDI), BIOMASS, Tandem-L) for promoting wall-to-wall AGB mapping with a high level of accuracy in dense tropical forest regions worldwide

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004‐2014)

    Full text link
    Tropical secondary forests (SF) play an important role in the global carbon cycle as a major terrestrial carbon sink. Here, we use high-resolution TerraClass data set for tracking land use activities in the Brazilian Amazon from 2004–2014 to detect spatial patterns and carbon sequestration dynamics of secondary forests (SF). By integrating satellite lidar and radar observations, we found the SF area in the Brazilian Amazon increased from approximately 22 Mha (10^6 ha) in 2004 to 28 Mha in 2014. However, the expansion in area was also accompanied by a dynamic land use activity that resulted in about 50% recycling of SF area annually from frequent clearing and abandonment. Consequently, the average age of SF remained less than 10 years (age ~8.2 with one standard deviation of 3.2 spatially) over the period of the study. Estimation of changes of carbon stocks shows that SF accumulates approximately 8.5 Mg ha^−1 year^−1 aboveground biomass during the first 10 years after clearing and abandonment, 4.5 Mg ha^−1 year^−1 for the next 10 years followed by a more gradual increase of 3 Mg ha^−1 year^−1 from 20 to 30 years with much slower rate thereafter. The effective carbon uptake of SF in Brazilian Amazon was negligible (0.06 ± 0.03 PgC year^−1) during this period, but the interannual variability was significantly larger (±0.2 PgC year^−1). If the SF areas were left to grow without further clearing for 100 years, it would absorb about 0.14 PgC year^−1 from the atmosphere, partially compensating the emissions from current rate of deforestation in the Brazilian Amazon.Published versio

    Estimativa de biomassa acima do solo de caatinga através de imagens SAR

    Get PDF
    A Caatinga é um bioma de ocorrência do semiárido do Brasil, tendo uma das maiores ocupações populacionais em terras secas no mundo. Porém, ainda há carência da aplicação de novas técnicas de estimativa de sua biomassa a partir de dados remotos. Sendo assim, o objetivo da tese foi avaliar a acurácia das imagens do Sentinel-1 na estimativa da biomassa acima do solo (BAS) da Caatinga no Alto Sertão do estado de Sergipe. A distribuição espacial e fenológica da Caatinga na região estudada foi analisada utilizando o Normalized Difference Vegetation Index (NDVI). A análise florística e fitossociológica foi realizada por meio do inventário florestal, utilizado também para calcular a BAS nos fragmentos de Caatinga. Foram testados diferentes métodos de filtragem para avaliar a eficácia na redução do speckle na imagem do Sentinel-1 analisando o número equivalente de looks (NEL). A estimativa da BAS utilizando imagens do Sentinel-1 utilizou dados do inventário em campo, comparando as acurácias das respostas de filtros a partir da decomposição polarimétrica e, posteriormente, testando os atributos: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropia (H), Ângulo Alpha (α), por meio de regressões lineares simples e múltiplas, na Caatinga Verde, Intermediária e Seca. A Caatinga estudada não é influenciada pelos fatores fisiográficos: declividade, altimetria, proximidade ao rio e tipo de solo. A Caatinga densa apresenta curvas fenológicas com maior condição de verdor que a aberta. A espécie Cenostigma pyramidale é a mais abundante entre as 25 identificadas. O filtro Gamma apresentou melhor desempenho na redução do speckle. A comparação da BAS estimada e observada indicou que a regressão múltipla fornece melhor acurácia nos períodos de Verdor (R2: 0,72) e Intermediário (R2: 0,73) da vegetação, com a contribuição de atributos coerentes e incoerentes. Portanto, o estudo permitiu analisar espacialmente a Caatinga estudada, caracterizando-a fenologicamente bem como sua composição e fitossociologia. Também foi possível verificar as diferentes atenuações do speckle no pré- processamento das imagens. Por fim, constatou-se que as imagens do Sentinel-1 podem ser utilizadas para a estimar a BAS.The Caatinga is a biome occurring in the semiarid region of Brazil, having one of the largest population occupations in dry lands in the world. However, there is still a lack of application of new techniques for estimating its biomass from remote data. Therefore, the objective of the thesis was to evaluate the accuracy of Sentinel-1 images in estimating the aboveground biomass (BAS) of the Caatinga in the Alto Sertão of the state of Sergipe. The spatial and phenological distribution of the Caatinga in the studied region was analyzed using the Normalized Difference Vegetation Index (NDVI). The floristic and phytosociological analysis was carried out through the forest inventory, also used to calculate the BAS in the Caatinga fragments. Different filtering methods were tested to evaluate the effectiveness of speckle reduction in the Sentinel-1 image by analyzing the equivalent number of looks (NEL). The BAS estimate using Sentinel-1 images used field inventory data comparing the accuracy of filter responses from the polarimetric decomposition and, later, testing the attributes: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropy (H), Alpha Angle (α), through simple and multiple linear regressions, in the Greenness, Intermediate and Dry Caatinga. The studied Caatinga is not influenced by physiographic factors: slope, altimetry, proximity to the river and type of soil. Dense Caatinga has phenological curves with greater greenness than open one. The Cenostigma pyramidale species is the most abundant among the 25 identified. The Gamma filter showed better performance in speckle reduction. The comparison of the estimated and observed BAS indicated that the multiple regression provides better accuracy in the Greenness (R2: 0.72) and Intermediate (R2: 0.73) periods of the vegetation, with the contribution of coherent and incoherent attributes. Therefore, the study allowed the spatial analysis of the studied Caatinga, characterizing it phenologically as well as its composition and phytosociology. It was also possible to verify the different attenuations of the speckle in the pre-processing of the images. Finally, it was found that Sentinel-1 images can be used to estimate BAS

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    The roles of textural images in improving land-cover classification in the Brazilian Amazon.

    Get PDF
    Texture has long been recognized as valuable in improving land-cover classification, but how data from different sensors with varying spatial resolutions affect the selection of textural images is poorly understood. This research examines textural images from the Landsat Thematic Mapper (TM), ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar), the SPOT (Satellite Pour l?Observation de la Terre) high-resolution geometric (HRG) instrument, and the QuickBird satellite, which have pixel sizes of 30, 12.5, 10/5, and 0.6 m, respectively, for land-cover classification in the Brazilian Amazon. GLCM (grey-level co-occurrence matrix)-based texture measures with various sizes of moving windows are used to extract textural images from the aforementioned sensor data. An index based on standard deviations and correlation coefficients is used to identify the best texture combination following separability analysis of land-cover types based on training sample plots. A maximum likelihood classifier is used to conduct the land-cover classification, and the results are evaluated using field survey data. This research shows the importance of textural images in improving land-cover classification, and the importance becomes more significant as the pixel size improved. It is also shown that texture is especially important in the case of the ALOS PALSAR and QuickBird data. Overall, textural images have less capability in distinguishing land-cover types than spectral signatures, especially for Landsat TM imagery, but incorporation of textures into radiometric data is valuable for improving landcover classification. The classification accuracy can be improved by 5.2?13.4% as the pixel size changes from 30 to 0.6 m

    Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science

    Get PDF
    1. The availability and accessibility of multispectral and radar satellite remote sensing (SRS) imagery are at an unprecedented high. These data have both become standard source of information for investigating species ecology and ecosystems structure, composition and function at large scales. Since they capture complementary aspects of the Earth's surface, synergies between these two types of imagery have the potential to greatly expand research and monitoring opportunities. However, despite the benefits of combining multispectral and radar SRS data, data fusion techniques, including image fusion, are not commonly used in biodiversity monitoring, ecology and conservation. / 2. To help close this application gap, we provide for the first time an overview of the most common SRS data fusion techniques, discussing their benefits and drawbacks, and pull together case studies illustrating the added value for biodiversity research and monitoring. / 3. Integrating and fusing multispectral and radar images can significantly improve our ability to assess the distribution as well as the horizontal and vertical structure of ecosystems. Additionally, SRS data fusion has the potential to increase opportunities for mapping species distribution and community composition, as well as for monitoring threats to biodiversity. Uptake of these techniques will benefit from more effective collaboration between remote sensing and biodiversity experts, making the reporting of methodologies more transparent, expanding SRS image processing capacity and promoting widespread open access to satellite imagery. / 4. In the context of a global biodiversity crisis, being able to track subtle changes in the biosphere across adequate spatial and temporal extents and resolutions is crucial. By making key parameter estimates derived from SRS data more accurate, SRS data fusion promises to become a powerful tool to help address current monitoring needs, and could support the development of essential biodiversity variables
    corecore