199 research outputs found

    Forest and Crop Leaf Area Index Estimation Using Remote Sensing: Research Trends and Future Directions

    Get PDF
    Leaf area index (LAI) is an important vegetation leaf structure parameter in forest and agricultural ecosystems. Remote sensing techniques can provide an effective alternative to field-based observation of LAI. Differences in canopy structure result in different sensor types (active or passive), platforms (terrestrial, airborne, or satellite), and models being appropriate for the LAI estimation of forest and agricultural systems. This study reviews the application of remote sensing-based approaches across different system configurations (passive, active, and multisource sensors on different collection platforms) that are used to estimate forest and crop LAI and explores uncertainty analysis in LAI estimation. A comparison of the difference in LAI estimation for forest and agricultural applications given the different structure of these ecosystems is presented, particularly as this relates to spatial scale. The ease of use of empirical models supports these as the preferred choice for forest and crop LAI estimation. However, performance variation among different empirical models for forest and crop LAI estimation limits the broad application of specific models. The development of models that facilitate the strategic incorporation of local physiology and biochemistry parameters for specific forests and crop growth stages from various temperature zones could improve the accuracy of LAI estimation models and help develop models that can be applied more broadly. In terms of scale issues, both spectral and spatial scales impact the estimation of LAI. Exploration of the quantitative relationship between scales of data from different sensors could help forest and crop managers more appropriately and effectively apply different data sources. Uncertainty coming from various sources results in reduced accuracy in estimating LAI. While Bayesian approaches have proven effective to quantify LAI estimation uncertainty based on the uncertainty of model inputs, there is still a need to quantify uncertainty from remote sensing data source, ground measurements and related environmental factors to mitigate the impacts of model uncertainty and improve LAI estimation

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Earth Resources: A continuing bibliography with indexes, issue 40

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Radiative transfer model inversion using high-resolution hyperspectral airborne imagery – Retrieving maize LAI to access biomass and grain yield

    Get PDF
    Mapping crop within-field yield variability provide an essential piece of information for precision agriculture applications. Leaf Area Index (LAI) is an important parameter that describes maize growth, vegetation structure, light absorption and subsequently maize biomass and grain yield (GY). The main goal for this study was to estimate maize biomass and GY through LAI retrieved from hyperspectral aerial images using a PROSAIL model inversion and compare its performance with biomass and GY estimations through simple vegetation index approaches. This study was conducted in two separate maize fields of 12 and 20 ha located in north-west Mexico. Both fields were cultivated with the same hybrid. One field was irrigated by a linear pivot and the other by a furrow irrigation system. Ground LAI data were collected at different crop growth stages followed by maize biomass and GY at the harvesting time. Through a weekly/biweekly airborne flight campaign, a total of 19 mosaics were acquired between both fields with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400 to 850 nanometres (nm) at different crop growth stages. The PROSAIL model was calibrated and validated for retrieving maize LAI by simulating maize canopy spectral reflectance based on crop-specific parameters. The model was used to retrieve LAI from both fields and to subsequently estimate maize biomass and GY. Additionally, different vegetation indices were calculated from the aerial images to also estimate maize yield and compare the indices with PROSAIL based estimations. The PROSAIL validation to retrieve LAI from hyperspectral imagery showed a R² value of 0.5 against ground LAI with RMSE of 0.8 m²/m². Maize biomass and GY estimation based on NDRE showed the highest accuracies, followed by retrieved LAI, GNDVI and NDVI with R² value of 0.81, 0.73, 0.73 and 0.65 for biomass, and 0.83, 0.69, 0.73 and 0.62 for GY estimation, respectively. Furthermore, the late vegetative growth stage at V16 was found to be the best stage for maize yield prediction for all studied indices

    Joint retrieval of growing season corn canopy LAI and leaf chlorophyll content by fusing Sentinel-2 and MODIS images

    Get PDF
    Continuous and accurate estimates of crop canopy leaf area index (LAI) and chlorophyll content are of great importance for crop growth monitoring. These estimates can be useful for precision agricultural management and agricultural planning. Our objectives were to investigate the joint retrieval of corn canopy LAI and chlorophyll content using filtered reflectances from Sentinel-2 and MODIS data acquired during the corn growing season, which, being generally hot and rainy, results in few cloud-free Sentinel-2 images. In addition, the retrieved time series of LAI and chlorophyll content results were used to monitor the corn growth behavior in the study area. Our results showed that: (1) the joint retrieval of LAI and chlorophyll content using the proposed joint probability distribution method improved the estimation accuracy of both corn canopy LAI and chlorophyll content. Corn canopy LAI and chlorophyll content were retrieved jointly and accurately using the PROSAIL model with fused Kalman filtered (KF) reflectance images. The relation between retrieved and field measured LAI and chlorophyll content of four corn-growing stages had a coefficient of determination (R2) of about 0.6, and root mean square errors (RMSEs) ranges of mainly 0.1-0.2 and 0.0-0.3, respectively. (2) Kalman filtering is a good way to produce continuous high-resolution reflectance images by synthesizing Sentinel-2 and MODIS reflectances. The correlation between fused KF and Sentinel-2 reflectances had an R2 value of 0.98 and RMSE of 0.0133, and the correlation between KF and field-measured reflectances had an R2 value of 0.8598 and RMSE of 0.0404. (3) The derived continuous KF reflectances captured the crop behavior well. Our analysis showed that the LAI increased from day of year (DOY) 181 (trefoil stage) to DOY 236 (filling stage), and then increased continuously until harvest, while the chlorophyll content first also increased from DOY 181 to DOY 236, and then remained stable until harvest. These results revealed that the jointly retrieved continuous LAI and chlorophyll content could be used to monitor corn growth conditions

    Earth Resources: A continuing bibliography with indexes (Issue 37)

    Get PDF
    This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data
    corecore