1,353 research outputs found

    Relaying systems with reciprocity mismatch : impact analysis and calibration

    Get PDF
    Cooperative beamforming can provide significant performance improvement for relaying systems with the help of the channel state information (CSI). In time-division duplexing (TDD) mode, the estimated CSI will deteriorate due to the reciprocity mismatch. In this work, we examine the impact and the calibration of the reciprocity mismatch in relaying systems. To evaluate the impact of the reciprocity mismatch for all devices, the closed-form expression of the achievable rate is first derived. Then, we analyze the performance loss caused by the reciprocity mismatch at sources, relays, and destinations respectively to show that the mismatch at relays dominates the impact. To compensate the performance loss, a two-stage calibration scheme is proposed for relays. Specifically, relays perform the intra-calibration based on circuits independently. Further, the inter-calibration based on the discrete Fourier transform (DFT) codebook is operated to improve the calibration performance by cooperation transmission, which has never been considered in previous work. Finally, we derive the achievable rate after relays perform the proposed reciprocity calibration scheme and investigate the impact of estimation errors on the system performance. Simulation results are presented to verify the analytical results and to show the performance of the proposed calibration approach

    MSE minimized joint transmission in coordinated multipoint systems with sparse feedback and constrained backhaul requirements

    Get PDF
    In a joint transmission coordinated multipoint (JT-CoMP) system, a shared spectrum is utilized by all neighbor cells. In the downlink, a group of base stations (BSs) coordinately transmit the users’ data to avoid serious interference at the users in the boundary of the cells, thus substantially improving area fairness. However, this comes at the cost of high feedback and backhaul load; In a frequency division duplex system, all users at the cell boundaries have to collect and send feedback of the downlink channel state information (CSI). In centralized JT-CoMP, although with capabilities for perfect coordination, a central coordination node have to send the computed precoding weights and corresponding data to all cells which can overwhelm the backhaul resources. In this paper, we design a JT-CoMP scheme, by which the sum of the mean square error (MSE) at the boundary users is minimized, while feedback and backhaul loads are constrained and the load is balanced between BSs. Our design is based on the singular value decomposition of CSI matrix and optimization of a binary link selection matrix to provide sparse feedback—constrained backhaul link. For comparison, we adopt the previously presented schemes for feedback and backhaul reduction in the physical layer. Extensive numerical evaluations show that the proposed scheme can reduce the MSE with at least 25 % , compared to the adopted and existing schemes

    Hierarchical-Absolute Reciprocity Calibration for Millimeter-wave Hybrid Beamforming Systems

    Full text link
    In time-division duplexing (TDD) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the reciprocity mismatch severely degrades the performance of the hybrid beamforming (HBF). In this work, to mitigate the detrimental effect of the reciprocity mismatch, we investigate reciprocity calibration for the mmWave-HBF system with a fully-connected phase shifter network. To reduce the overhead and computational complexity of reciprocity calibration, we first decouple digital radio frequency (RF) chains and analog RF chains with beamforming design. Then, the entire calibration problem of the HBF system is equivalently decomposed into two subproblems corresponding to the digital-chain calibration and analog-chain calibration. To solve the calibration problems efficiently, a closed-form solution to the digital-chain calibration problem is derived, while an iterative-alternating optimization algorithm for the analog-chain calibration problem is proposed. To measure the performance of the proposed algorithm, we derive the Cram\'er-Rao lower bound on the errors in estimating mismatch coefficients. The results reveal that the estimation errors of mismatch coefficients of digital and analog chains are uncorrelated, and that the mismatch coefficients of receive digital chains can be estimated perfectly. Simulation results are presented to validate the analytical results and to show the performance of the proposed calibration approach

    Towards versatile access networks (Chapter 3)

    Get PDF
    Compared to its previous generations, the 5th generation (5G) cellular network features an additional type of densification, i.e., a large number of active antennas per access point (AP) can be deployed. This technique is known as massive multipleinput multiple-output (mMIMO) [1]. Meanwhile, multiple-input multiple-output (MIMO) evolution, e.g., in channel state information (CSI) enhancement, and also on the study of a larger number of orthogonal demodulation reference signal (DMRS) ports for MU-MIMO, was one of the Release 18 of 3rd generation partnership project (3GPP Rel-18) work item. This release (3GPP Rel-18) package approval, in the fourth quarter of 2021, marked the start of the 5G Advanced evolution in 3GPP. The other items in 3GPP Rel-18 are to study and add functionality in the areas of network energy savings, coverage, mobility support, multicast broadcast services, and positionin

    Large-Scale Antenna Systems With UL/DL Hardware Mismatch: Achievable Rates Analysis and Calibration

    Get PDF

    Técnicas de equalização híbridas para sistemas heterogéneos na banda das ondas milimétricas

    Get PDF
    With the constant demand for better service and higher transmission rates current technologies are reaching the limits of the channel capacity. Although, technologies such as MIMO and Heterogeneous systems appear to increase the channel capacity by introducing more antennas at the transceivers making the link between users and base station more reliable. Furthermore, the current spectrum, sub-6GHz, is becoming saturated and due to the properties of such frequencies the deployment of heterogeneous systems can introduce some levels of interference. Towards improving future communication systems a new part of the frequencies spectrum available should be used, researchers have their eyes on the mmWave band. This band allows to increase the carrier frequency and respective signal bandwidth and therefore increase the transmission speeds, moreover the properties of such frequencies unlock some advantages over the frequencies used in the sub-6G band. Additionally, mmWave band can be combined with massive MIMO technology to enhance the system capacity and to deploy more antenna elements in the transceivers. One more key technology that improves the energy efficiency in systems with hundreds of antenna elements is the possibility to combine analog and digital precoding techniques denoted as hybrid architectures. The main advantages of such techniques is that contrary to the full digital precoding processing used in current systems this new architecture allows to reduce the number of RF chains per antenna leading to improved energy efficiency. Furthermore to handle heterogeneous systems that have small-cells within the macro-cell, techniques such as Interference Alignment (IA) can be used to efficiently remove the existing multi-tier interference. In this dissertation a massive MIMO mmWave heterogeneous system is implemented and evaluated. It is designed analog-digital equalizers to efficiently remove both the intra an inter-tier interference. At digital level, an interference alignment technique is used to remove the interference and increase the spectral efficiency. The results showed that the proposed solutions are efficient to remove the macro and small cells interference.Com a constante procura de melhores serviços e taxas de transmissão mais elevadas, as tecnologias atuais estão a atingir os limites de capacidade do canal. Contudo tecnologias como o MIMO e os sistemas heterogéneos permitem aumentar a capacidade do canal através da introdução de mais antenas nos transcetores e através da implementação de pequenos pontos de acesso espalhados pela célula primária, com o intuito de tornar as ligações entre os utilizadores e a estação base mais fiáveis. Tendo também em atenção que o espectro atual, sub-6GHz, está sobrecarregado e que devido às propriedades das frequências utilizadas a implementação de sistemas heterogéneos pode levar a níveis de interferência insustentáveis. Por modo a resolver esta sobrecarga futuros sistemas de comunicação devem aproveitar uma maior parte do espectro de frequências disponível. A banda das ondas milimétricas (mmWave) tem sido apontada como solução, o que permite aumentar a frequência utilizada para transportar o sinal e consequentemente aumentar as velocidades de transmissão. Uma outra vantagem da banda mmWave é que pode ser combinada com a tecnologia MIMO massivo, permitindo implementar mais elementos de antena nos terminais e consequentemente aumentar a capacidade do sistema. Umas das tecnologias desenvolvida para melhorar a eficiência energética em sistemas com centenas de antenas é a possibilidade de combinar técnicas de codificação analógica e digital, designadas como arquiteturas híbridas. A principal vantagem desta técnica é que, contrariamente ao processamento feito nos sistemas atuais, totalmente no domínio digital, esta nova arquitetura permite reduzir o número de cadeias RF por antena. Com o intuito de reduzir a interferência em sistemas heterogéneos, técnicas como o alinhamento de interferência são usadas para separar utilizadores das células secundárias dos utilizadores das células primárias de modo a reduzir a interferência multi-nível existente no sistema geral. Nesta dissertação, é implementado e avaliado um sistema heterogéneo que combina MIMO massivo e ondas milimétricas. Este sistema é projetado com equalizadores analógico-digitais para remover com eficiência a interferência intra e inter-camadas. No domínio digital é utilizada a técnica de alinhamento de interferência para remover a interferência e aumentar a eficiência espectral. Os resultados mostram que as soluções propostas são eficientes para remover a interferência entre as células secundárias e a primária.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Hierarchical-absolute reciprocity calibration for millimeter-wave hybrid beamforming systems

    Get PDF
    In time-division duplexing (TDD) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the reciprocity mismatch severely degrades the performance of the hybrid beamforming (HBF). In this work, to mitigate the detrimental effect of the reciprocity mismatch, we investigate reciprocity calibration for the mmWave-HBF system with a fully-connected phase shifter network. To reduce the over-head and computational complexity of reciprocity calibration, we first decouple digital radio frequency (RF) chains and analog RF chains with beamforming design. Then, the entire calibration problem of the HBF system is equivalently decomposed into two subproblems corresponding to the digital-chain calibration and analog-chain calibration. To solve the calibration problems efficiently, a closed-form solution to the digital-chain calibration problem is derived, while an iterative-alternating optimization algorithm for the analog-chain calibration problem is proposed. To measure the performance of the proposed algorithm, we derive the Cramér-Rao lower bound on the errors in estimating mismatch coefficients. The results reveal that the estimation errors of mismatch coefficients of digital and analog chains are uncorrelated, and that the mismatch coefficients of receive digital chains can be estimated perfectly. Simulation results are presented to validate the analytical results and to show the performance of the proposed calibration approach

    Enabling self organisation for future cellular networks.

    Get PDF
    The rapid growth in mobile communications due to the exponential demand for wireless access is causing the distribution and maintenance of cellular networks to become more complex, expensive and time consuming. Lately, extensive research and standardisation work has been focused on the novel paradigm of self-organising network (SON). SON is an automated technology that allows the planning, deployment, operation, optimisation and healing of the network to become faster and easier by reducing the human involvement in network operational tasks, while optimising the network coverage, capacity and quality of service. However, these SON autonomous features cannot be achieved with the current drive test coverage assessment approach due to its lack of automaticity which results in huge delays and cost. Minimization of drive test (MDT) has recently been standardized by 3GPP as a key self- organising network (SON) feature. MDT allows coverage to be estimated at the base station using user equipment (UE) measurement reports with the objective to eliminate the need for drive tests. However, most MDT based coverage estimation methods recently proposed in literature assume that UE position is known at the base station with 100% accuracy, an assumption that does not hold in reality. In this work, we develop a novel and accurate analytical model that allows the quantification of error in MDT based autonomous coverage estimation (ACE) as a function of error in UE as well as base station (user deployed cell) positioning. We first consider a circular cell with an omnidirectional antenna and then we use a three-sectored cell and see how the system is going to be affected by the UE and the base station (user deployed cell) geographical location information errors. Our model also allows characterization of error in ACE as function of standard deviation of shadowing in addition to the path-loss
    corecore