731 research outputs found

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use

    Estimating the crop leaf area index using hyperspectral remote sensing

    Get PDF
    AbstractThe leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review

    Sensor capability and atmospheric correction in ocean colour remote sensing

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Accurate correction of the corrupting effects of the atmosphere and the water's surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi-and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio-Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges

    Physics-constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios

    Get PDF
    Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using collected data. These deep learning-based compensation algorithms resulted in comparable detection performance to established methods while accelerating the image processing chain by 8X

    A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping

    Get PDF
    Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN) and Spectral Angle Mapper (SAM) classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878) the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795). Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ∼1% for ANN and ∼6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting

    Water Quality Observations from Space: A Review of Critical Issues and Challenges

    Get PDF
    Water is the basis of all life on this planet. Yet, approximately one in seven people in the world do not have access to safe water. Water can become unsafe due to contamination by various organic and inorganic compounds due to various natural and anthropogenic processes. Identifying and monitoring water quality changes in space and time remains a challenge, especially when contamination events occur over large geographic areas. This study investigates recent advances in remote sensing that allow us to detect and monitor the unique spectral characteristics of water quality events over large areas. Based on an extensive literature review, we focus on three critical water quality problems as part of this study: algal blooms, acid mine drainage, and suspended solids. We review the advances made in applications of remote sensing in each of these issues, identify the knowledge gaps and limitations of current studies, analyze the existing approaches in the context of global environmental changes, and discuss potential ways to combine multi-sensor methods and different wavelengths to develop improved approaches. Synthesizing the findings of these studies in the context of the three specific tracks will help stakeholders to utilize, share, and embed satellite-derived earth observations for monitoring and tracking the ever-evolving water quality in the earth’s limited freshwater reserves

    Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas

    Get PDF
    Fire risk assessment is one of the most important components in the management of fire that offers the framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly revolved around field data, Remote Sensing (RS) plays key role in quantifying and monitoring fire risk indicators. This study presents a review of remote sensing data and techniques for fire risk monitoring and assessment with a particular emphasis on its implications for wildfire risk mapping in protected areas. Firstly, we concentrate on RS derived variables employed to monitor fire risk conditions for fire risk assessment. Thereafter, an evaluation of the prominent RS platforms such as Broadband, Hyperspectral and Active sensors that have been utilized for wildfire risk assessment. Furthermore, we demonstrate the effectiveness in obtaining information that has operational use or immediate potentials for operational application in protected areas (PAs). RS techniques that involve extraction of landscape information from imagery were summarised. The review concludes that in practice, fire risk assessment that consider all variables/indicators that influence fire risk is impossible to establish, however it is imperative to incorporate indicators or variables of very high heterogeneous and “multi-sensoral or multivariate fire risk index approach for fire risk assessment in PA.Keywords: Protected Areas, Fire Risk conditions; Remote Sensing, Wildfire risk assessmen

    Satellite based methane emission estimation for flaring activities in oil and gas industry: A data-driven approach(SMEEF-OGI)

    Get PDF
    Klimaendringer, delvis utløst av klimagassutslipp, utgjør en kritisk global utfordring. Metan, en svært potent drivhusgass med et globalt oppvarmings potensial på 80 ganger karbondioksid, er en betydelig bidragsyter til denne krisen. Kilder til metanutslipp inkluderer olje- og gassindustrien, landbruket og avfallshåndteringen, med fakling i olje- og gassindustrien som en betydelig utslippskilde. Fakling, en standard prosess i olje- og gassindustrien, antas ofte å være 98 % effektiv ved omdannelse av metan til mindre skadelig karbondioksid. Nyere forskning fra University of Michigan, Stanford, Environmental Defense Fund og Scientific Aviation indikerer imidlertid at den allment aksepterte effektiviteten på 98 % av fakling ved konvertering av metan til karbondioksid, en mindre skadelig klimagass, kan være unøyaktig. Denne undersøkelsen revurderer fakkelprosessens effektivitet og dens rolle i metankonvertering. Dette arbeidet fokuserer på å lage en metode for uavhengig å beregne metanutslipp fra olje- og gassvirksomhet for å løse dette problemet. Satellittdata, som er et nyttig verktøy for å beregne klimagassutslipp fra ulike kilder, er inkludert i den foreslåtte metodikken. I tillegg til standard overvåkingsteknikker, tilbyr satellittdata en uavhengig, ikke-påtrengende, rimelig og kontinuerlig overvåkingstilnærming. På bakgrunn av dette er problemstillingen for dette arbeidet følgende "Hvordan kan en datadrevet tilnærming utvikles for å forbedre nøyaktigheten og kvaliteten på estimering av metanutslipp fra faklingsaktiviteter i olje- og gassindustrien, ved å bruke satellittdata fra utvalgte plattformer for å oppdage og kvantifisere fremtidige utslipp basert på maskinlæring mer effektivt?" For å oppnå dette ble følgende mål og aktiviteter utført. * Teoretisk rammeverk og sentrale begreper * Teknisk gjennomgang av dagens toppmoderne satellittplattformer og eksisterende litteratur. * Utvikling av et Proof of Concept * Foreslå en evaluering av metoden * Anbefalinger og videre arbeid Dette arbeidet har tatt i bruk en systematisk tilnærming, som starter med et omfattende teoretisk rammeverk for å forstå bruken av fakling, de miljømessige implikasjonene av metan, den nåværende «state-of-the-art» av forskning, og «state-of-the-art» i felt for fjernmåling via satellitter. Basert på rammeverket utviklet i de innledende fasene av dette arbeidet, ble det formulert en datadrevet metodikk, som benytter VIIRS-datasettet for å få geografiske områder av interesse. Hyperspektrale data og metandata ble samlet fra Sentinel-2 og Sentinel-5P satellittdatasettet. Denne informasjonen ble behandlet via en foreslått rørledning, med innledende justering og forbedring. I dette arbeidet ble bildene forbedret ved å beregne den normaliserte brennindeksen. Resultatet var et datasett som inneholdt plasseringen av kjente fakkelsteder, med data fra både Sentinel-2 og Sentinel-5P-satellitten. Resultatene understreker forskjellene i dekningen mellom Sentinel-2- og Sentinel-5P-data, en faktor som potensielt kan påvirke nøyaktigheten av metanutslippsestimater. De anvendte forbehandlingsteknikkene forbedret dataklarheten og brukervennligheten markant, men deres effektivitet kan avhenge av fakkelstedenes spesifikke egenskaper og rådatakvaliteten. Dessuten, til tross for visse begrensninger, ga kombinasjonen av Sentinel-2 og Sentinel-5P-data effektivt et omfattende datasett egnet for videre analyse. Avslutningsvis introduserer dette prosjektet en oppmuntrende metodikk for å estimere metanutslipp fra fakling i olje- og gassindustrien. Den legger et grunnleggende springbrett for fremtidig forskning, og forbedrer kontinuerlig presisjonen og kvaliteten på data for å bekjempe klimaendringer. Denne metodikken kan sees i flytskjemaet nedenfor. Basert på arbeidet som er gjort i dette prosjektet, kan fremtidig arbeid fokusere på å innlemme alternative kilder til metan data, utvide interesseområdene gjennom industrisamarbeid og forsøke å trekke ut ytterligere detaljer gjennom bildesegmenteringsmetoder. Dette prosjektet legger et grunnlag, og baner vei for påfølgende utforskninger å bygge videre på.Climate change, precipitated in part by greenhouse gas emissions, presents a critical global challenge. Methane, a highly potent greenhouse gas with a global warming potential of 80 times that of carbon dioxide, is a significant contributor to this crisis. Sources of methane emissions include the oil and gas industry, agriculture, and waste management, with flaring in the oil and gas industry constituting a significant emission source. Flaring, a standard process in the Oil and gas industry is often assumed to be 98% efficient when converting methane to less harmful carbon dioxide. However, recent research from the University of Michigan, Stanford, the Environmental Defense Fund, and Scientific Aviation indicates that the widely accepted 98% efficiency of flaring in converting methane to carbon dioxide, a less harmful greenhouse gas, may be inaccurate. This investigation reevaluates the flaring process's efficiency and its role in methane conversion. This work focuses on creating a method to independently calculate methane emissions from oil and gas activities to solve this issue. Satellite data, which is a helpful tool for calculating greenhouse gas emissions from various sources, is included in the suggested methodology. In addition to standard monitoring techniques, satellite data offers an independent, non-intrusive, affordable, and continuous monitoring approach. Based on this, the problem statement for this work is the following “How can a data-driven approach be developed to enhance the accuracy and quality of methane emission estimation from flaring activities in the Oil and Gas industry, using satellite data from selected platforms to detect and quantify future emissions based on Machine learning more effectively?" To achieve this, the following objectives and activities were performed. * Theoretical Framework and key concepts * Technical review of the current state-of-the-art satellite platforms and existing literature. * Development of a Proof of Concept * Proposing an evaluation of the method * Recommendations and further work This work has adopted a systematic approach, starting with a comprehensive theoretical framework to understand the utilization of flaring, the environmental implications of methane, the current state-of-the-art of research, and the state-of-the-art in the field of remote sensing via satellites. Based upon the framework developed during the initial phases of this work, a data-driven methodology was formulated, utilizing the VIIRS dataset to get geographical areas of interest. Hyperspectral and methane data were aggregated from the Sentinel-2 and Sentinel-5P satellite dataset. This information was processed via a proposed pipeline, with initial alignment and enhancement. In this work, the images were enhanced by calculating the Normalized Burn Index. The result was a dataset containing the location of known flare sites, with data from both the Sentinel-2, and the Sentinel-5P satellite. The results underscore the disparities in coverage between Sentinel-2 and Sentinel-5P data, a factor that could potentially influence the precision of methane emission estimates. The applied preprocessing techniques markedly enhanced data clarity and usability, but their efficacy may hinge on the flaring sites' specific characteristics and the raw data quality. Moreover, despite certain limitations, the combination of Sentinel-2 and Sentinel-5P data effectively yielded a comprehensive dataset suitable for further analysis. In conclusion, this project introduces an encouraging methodology for estimating methane emissions from flaring activities within the oil and gas industry. It lays a foundational steppingstone for future research, continually enhancing the precision and quality of data in combating climate change. This methodology can be seen in the flow chart below. Based on the work done in this project, future work could focus on incorporating alternative sources of methane data, broadening the areas of interest through industry collaboration, and attempting to extract further features through image segmentation methods. This project signifies a start, paving the way for subsequent explorations to build upon. Climate change, precipitated in part by greenhouse gas emissions, presents a critical global challenge. Methane, a highly potent greenhouse gas with a global warming potential of 80 times that of carbon dioxide, is a significant contributor to this crisis. Sources of methane emissions include the oil and gas industry, agriculture, and waste management, with flaring in the oil and gas industry constituting a significant emission source. Flaring, a standard process in the Oil and gas industry is often assumed to be 98% efficient when converting methane to less harmful carbon dioxide. However, recent research from the University of Michigan, Stanford, the Environmental Defense Fund, and Scientific Aviation indicates that the widely accepted 98% efficiency of flaring in converting methane to carbon dioxide, a less harmful greenhouse gas, may be inaccurate. This investigation reevaluates the flaring process's efficiency and its role in methane conversion. This work focuses on creating a method to independently calculate methane emissions from oil and gas activities to solve this issue. Satellite data, which is a helpful tool for calculating greenhouse gas emissions from various sources, is included in the suggested methodology. In addition to standard monitoring techniques, satellite data offers an independent, non-intrusive, affordable, and continuous monitoring approach. Based on this, the problem statement for this work is the following “How can a data-driven approach be developed to enhance the accuracy and quality of methane emission estimation from flaring activities in the Oil and Gas industry, using satellite data from selected platforms to detect and quantify future emissions based on Machine learning more effectively?" To achieve this, the following objectives and activities were performed. * Theoretical Framework and key concepts * Technical review of the current state-of-the-art satellite platforms and existing literature. * Development of a Proof of Concept * Proposing an evaluation of the method * Recommendations and further work This work has adopted a systematic approach, starting with a comprehensive theoretical framework to understand the utilization of flaring, the environmental implications of methane, the current state-of-the-art of research, and the state-of-the-art in the field of remote sensing via satellites. Based upon the framework developed during the initial phases of this work, a data-driven methodology was formulated, utilizing the VIIRS dataset to get geographical areas of interest. Hyperspectral and methane data were aggregated from the Sentinel-2 and Sentinel-5P satellite dataset. This information was processed via a proposed pipeline, with initial alignment and enhancement. In this work, the images were enhanced by calculating the Normalized Burn Index. The result was a dataset containing the location of known flare sites, with data from both the Sentinel-2, and the Sentinel-5P satellite. The results underscore the disparities in coverage between Sentinel-2 and Sentinel-5P data, a factor that could potentially influence the precision of methane emission estimates. The applied preprocessing techniques markedly enhanced data clarity and usability, but their efficacy may hinge on the flaring sites' specific characteristics and the raw data quality. Moreover, despite certain limitations, the combination of Sentinel-2 and Sentinel-5P data effectively yielded a comprehensive dataset suitable for further analysis. In conclusion, this project introduces an encouraging methodology for estimating methane emissions from flaring activities within the oil and gas industry. It lays a foundational steppingstone for future research, continually enhancing the precision and quality of data in combating climate change. This methodology can be seen in the flow chart below. Based on the work done in this project, future work could focus on incorporating alternative sources of methane data, broadening the areas of interest through industry collaboration, and attempting to extract further features through image segmentation methods. This project signifies a start, paving the way for subsequent explorations to build upon
    corecore