217 research outputs found

    Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    Get PDF
    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies

    Snow Phenology and Hydrologic Timing in the Yukon River Basin, AK, USA

    Get PDF
    The Yukon River basin encompasses over 832,000 km2 of boreal Arctic Alaska and northwest Canada, providing a major transportation corridor and multiple natural resources to regional communities. The river seasonal hydrology is defined by a long winter frozen season and a snowmelt-driven spring flood pulse. Capabilities for accurate monitoring and forecasting of the annual spring freshet and river ice breakup (RIB) in the Yukon and other northern rivers is limited, but critical for understanding hydrologic processes related to snow, and for assessing flood-related risks to regional communities. We developed a regional snow phenology record using satellite passive microwave remote sensing to elucidate interactions between the timing of upland snowmelt and the downstream spring flood pulse and RIB in the Yukon. The seasonal snow metrics included annual Main Melt Onset Date (MMOD), Snowoff (SO) and Snowmelt Duration (SMD) derived from multifrequency (18.7 and 36.5 GHz) daily brightness temperatures and a physically-based Gradient Ratio Polarization (GRP) retrieval algorithm. The resulting snow phenology record extends over a 29-year period (1988–2016) with 6.25 km grid resolution. The MMOD retrievals showed good agreement with similar snow metrics derived from in situ weather station measurements of snowpack water equivalence (r = 0.48, bias = −3.63 days) and surface air temperatures (r = 0.69, bias = 1 day). The MMOD and SO impact on the spring freshet was investigated by comparing areal quantiles of the remotely sensed snow metrics with measured streamflow quantiles over selected sub-basins. The SO 50% quantile showed the strongest (p \u3c 0.1) correspondence with the measured spring flood pulse at Stevens Village (r = 0.71) and Pilot (r = 0.63) river gaging stations, representing two major Yukon sub-basins. MMOD quantiles indicating 20% and 50% of a catchment under active snowmelt corresponded favorably with downstream RIB (r = 0.61) from 19 river observation stations spanning a range of Yukon sub-basins; these results also revealed a 14–27 day lag between MMOD and subsequent RIB. Together, the satellite based MMOD and SO metrics show potential value for regional monitoring and forecasting of the spring flood pulse and RIB timing in the Yukon and other boreal Arctic basins

    Analysis of ice-sheet temperature profiles from low-frequency airborne remote sensing

    Get PDF
    Abstract Ice internal temperature and basal geothermal heat flux (GHF) are analyzed along a study line in northwestern Greenland. The temperatures were obtained from a previously reported inversion of airborne microwave brightness-temperature spectra. The temperatures vary slowly through the upper ice sheet and more rapidly near the base increasing from ~259 K near Camp Century to values near the melting point near NorthGRIP. The flow-law rate factor is computed from temperature data and analytic expressions. The rate factor increases from ~1 × 10−8 to 8 × 10−8 kPa−3 a−1 along the line. A laminar flow model combined with the depth-dependent rate factor is used to estimate horizontal velocity. The modeled surface velocities are about a factor of 10 less than interferometric synthetic aperture radar (InSAR) surface velocities. The laminar velocities are fitted to the InSAR velocities through a factor of 8 enhancement of the rate factor for the lower 25% of the column. GHF values retrieved from the brightness temperature spectra increase from ~55 to 84 mW m−2 from Camp Century to NorthGRIP. A strain heating correction improves agreement with other geophysical datasets near Camp Century and NEEM but differ by ~15 mW m−2 in the central portion of the profile

    NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager

    Get PDF
    The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided

    A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data

    Get PDF
    Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice surface above the sea level, which can be converted into sea-ice thickness. Relative uncertainties associated with this method are large over thin ice regimes. Another retrieval method is based on the evaluation of surface brightness temperature (TB) in L-band microwave frequencies (1.4 GHz) with a thickness-dependent emission model, as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer-based method looses sensitivity for thick sea ice (> 1 m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the altimeter data. This study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter and SMOS radiometer. We use two merging approaches: a weighted mean (WM) and an optimal interpolation (OI) scheme. While the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The benefit of the data merging is shown by a comparison with airborne electromagnetic (AEM) induction sounding measurements. When compared to airborne thickness data in the Barents Sea, the merged product has a root mean square deviation (RMSD) of about 0.7 m less than the CS2 product and therefore demonstrates the capability to enhance the CS2 product in thin ice regimes. However, in mixed first-year (FYI) and multiyear (MYI) ice regimes as in the Beaufort Sea, the CS2 retrieval shows the lowest bias

    Towards long-term records of rain-on-snow events across the Arctic from satellite data

    Get PDF
    Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. Snowpack properties are changing, and in extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. Specifically, satellite microwave observations have been shown to provide insight into known events. Only Ku-band radar (scatterometer) has been applied so far across the entire Arctic. Data availability at this frequency is limited, however. The utility of other frequencies from passive and active systems needs to be explored to develop a concept for long-term monitoring. The latter are of specific interest as they can be potentially provided at higher spatial resolution. Radar records have been shown to capture the associated snow structure change based on time-series analyses. This approach is also applicable when data gaps exist and has capabilities to evaluate the impact severity of events. Active as well as passive microwave sensors can also detect wet snow at the timing of an ROS event if an acquisition is available. The wet snow retrieval methodology is, however, rather mature compared to the identification of snow structure change since ambiguous scattering behaviour needs consideration. C-band radar is of special interest due to good data availability including a range of nominal spatial resolutions (10 m–12.5 km). Scatterometer and SAR (synthetic aperture radar) data have therefore been investigated. The temperature dependence of C-band backscatter at VV (V – vertical) polarization observable down to −40 ◦C is identified as a major issue for ROS retrieval but can be addressed by a combination with a passive microwave wet snow indicator (demonstrated for Metop ASCAT – Advanced Scatterometer – and SMOS – Soil Moisture and Ocean Salinity). Results were compared to in situ observations (snowpit records, caribou migration data) and Ku-band products. Ice crusts were found in the snowpack after detected events (overall accuracy 82 %). The more crusts (events) there are, the higher the winter season backscatter increase at C-band will be. ROS events captured on the Yamal and Seward peninsulas have had severe impacts on reindeer and caribou, respectively, due to ice crust formation. SAR specifically from Sentinel-1 is promising regarding ice layer identification at better spatial details for all available polarizations. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record, but the consideration of performance differences due to spatial and temporal cover, as well as microwave frequency, is crucial. Retrieval is most robust in the tundra biome, where results are comparable between sensors. Records can be used to identify extremes and to apply the results for impact studies at regional scale
    • …
    corecore